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1. Introduction

The Petersson trace formula provides a deep relationship between the Fourier coefficients
of cusp forms on one hand, and Bessel functions and Kloosterman sums on the other hand.
In this expository note, we’ll prove this formula. Following Iwaniec and Kowalski’s
exposition in [3], we’ll do this by computing the Fourier coefficients of the Poincaré series

Pm(z) =
∑

γ∈Γ∞\Γ0(q)

χ(γ)jγ(z)
−ke(mγz)

in two different ways:
(1) On one hand, we’ll express the n’th Fourier coefficient of Pm(z) as an infinite series of

Bessel functions twisted by scaled Kloosterman sums. This is carried out in Section 2,
where we construct Poincaré series, and in Section 3, where we decompose the coset
space Γ∞\Γ0(q) in order to more easily get at the n’th Fourier coefficient. Appendix
A verifies a contour shift that furnishes the integral representation for the Jν-Bessel
function that is used in this section.

(2) On the other hand, we’ll spectrally expand Pm(z) inside the Hilbert space of cusp
forms, and then compute that the n’th Fourier coefficient of this spectral expansion is
a scaled “inner product” of Fourier coefficients of any basis of the Hilbert space. These
details are carried out in Section 4, where we construct the Petersson inner product
on the space of cusp forms, and in Section 5, where we compute the projection of an
arbitrary cusp form onto a Poincaré series.

We combine these calculations in Section 6 to prove Petersson’s trace formula. And in
Section 7, we provide a toy application of Petersson’s trace formula: a convergent series
for the Ramanujan tau function. Throughout this note, we freely use basic definitions and
notations from the theory of modular forms, for which a good reference is [2].

2. Construction of Poincaré series

Here we define the Poincaré series and gather some of its basic properties. Let us fix
integers m ≥ 0 and k > 2. If χ is a Dirichlet character modulo q (not necessarily primitive)
then clearly χ induces a character of Γ0(q) by χ(γ) := χ(d), where here and throughout,

γ =

(
a b

c d

)
. Define the automorphy factor jγ(z) := cz + d, as well as the matrix group

Γ∞ := {±T n : n ∈ Z} , where Tn :=

(
1 n

0 1

)
. We write e(x) := e2πix.
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Proposition 2.1. The m’th Poincaré series (of weight k, level q, twisted by character χ),
which is defined as

(2.1) Pm(z) :=
∑

γ∈Γ∞\Γ0(q)

χ(γ)jγ(z)
−ke(mγz),

has the following properties:
(1) The summands are well-defined (independent of choice of coset representative);
(2) Pm(z) converges absolutely in H by comparison to the Eisenstein series Ek(z);
(3) For any τ ∈ Γ0(q), we have Pm(τz) = χ(τ)jτ (z)

kPm(z).

Proof. We first verify that the summands of Pm are well-defined. If Γ∞γ1 = Γ∞γ2, we must
show that

(2.2) χ(d1)(c1z + d1)
−ke(mγ1z) = χ(d2)(c2z + d2)

−ke(mγ2z).

Towards this, we’ll use the fact that the following is a well-defined bijection:

Γ∞\Γ0(q) →
{
(c, d) ∈ Z2 : c > 0, q | c, (c, d) = 1

}
∪ {(0, 1)}(2.3)

Γ∞

(
a b

c d

)
7→

{
(0, 1) c = 0

(|c|, sgn(c) · d) c 6= 0.

The proof of this is elementary, and is worked out in full detail for q = 1 in [1]; the general
case follows mutatis mutandis.

If c1 = c2 and d1 = d2 in (2.2), then the first two factors cancel; if c1 = −c2 and d1 = −d2,
then the first two factors cancel iff χ(−1) = (−1)k, which we assume.1 Therefore it suffices
to show that e(mγz) = e(m(±T nγz)). We compute that

T nγz =

(
a+ nc b+ nd

c d

)
z =

(a+ nc)z + (b+ nd)

cz + d
=

az + b

cz + d
+

n(cz + d)

cz + d
= γz + n,

which implies that e(mγz) = e(mT nγz) by periodicity of the exponential map. And as −I
acts trivially on H, we have (−T nγ)z = (T nγ)z, so e(mγz) = e(m(−T n)γz) as well.

The Poincaré series converges absolutely, as can be seen by comparison to the Eisen-
stein series: for any γ ∈ Γ∞\Γ0(q), we have

∣∣e2πim(γz)
∣∣ ≤ 1 because γz = x + iy ∈ H

and
∣∣e2πim(x+iy)

∣∣ = e−2πmy < 1. And the modular transformation law is a straightforward
consequence of absolute convergence: we compute

Pm(τz) =
∑

γ∈Γ∞\Γ0(q)

χ(γ)jγ(τz)
−ke(mγτz)

= χ(τ)jτ (z)
k

∑
γ∈Γ∞\Γ0(q)

χ(γτ)jγτ (z)
−ke(mγτz),

which follows from the chain rule jγτ (z) = jγ(τz)jτ (z). By absolute convergence, we can
rearrange this series to obtain the transformation law (3), as required. �

1Standard fact: by the modular transformation law with −I, modular forms vanish everywhere unless
χ(−1) = (−1)k.
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3. Fourier expansion of Poincaré series

Expanding the coset sum defining Pm(z) into an infinite series will require decomposing the
Fuschian group Γ0(q) in various ways. This is taken care of in the following group-theoretic
lemma.

Lemma 3.1. The group Γ0(q) decomposes as the disjoint union

(3.1) Γ0(q) = Γ∞ ∪
⋃
c>0
q|c

⋃
1≤d≤c
(c,d)=1

Γ∞

(
∗ ∗
c d

)
Γ∞.

In particular, this implies the following decompositions:

Γ∞\Γ0(q)/Γ∞ = {Γ∞} ∪
{
Γ∞

(
∗ ∗
c d

)
Γ∞ : c > 0, 1 ≤ d ≤ c with q | c, (c, d) = 1

}
Γ∞\Γ0(q) = {Γ∞} ∪

{
Γ∞

(
∗ ∗
c d

)
: c > 0, d ∈ Z with q | c, (c, d) = 1

}
.

Proof. We’ll first argue that set equality holds in (3.1). Consider

(3.2) γ =

(
a′ b′

c′ d′

)
∈ Γ0(q),

and assume γ 6∈ Γ∞, so c′ 6= 0. If c′ > 0, then by the division algorithm, let us write
d′ = nc′ + d for some 1 ≤ d ≤ c′, so(

a′ b′

c′ d′

)(
1 −n

0 1

)
=

(
a′ b′ − na′

c′ d′ − nc′

)
=

(
a′ b′ − na′

c′ d

)
,

hence (
a′ b′

c′ d′

)
=

(
a′ b′ − na′

c′ d

)(
1 n

0 1

)
∈ Γ∞

(
a′ b′ − na′

c′ d

)
Γ∞.

And if c′ < 0, then writing −d′ = n(−c′) + d, where 1 ≤ d ≤ −c′, we compute(
−1 0

0 −1

)(
a′ b′

c′ d′

)(
1 −n

0 1

)
=

(
−a′ −b′ + na′

−c′ −d′ + nc′

)
=

(
−a′ −b′ + na′

−c′ d

)
,

hence (
a′ b′

c′ d′

)
=

(
−1 0

0 −1

)(
−a′ −b′ + na′

−c′ d

)(
1 n

0 1

)
∈ Γ∞

(
−a′ −b′ + na′

−c′ d

)
Γ∞.

This shows that the RHS of (2.3) contains Γ0(q).
Towards verifying the converse, let us consider the following cosets:

Γ∞

(
a b

c d

)
=

{
±
(
a+ nc b+ nd

c d

)}
,

(
a b

c d

)
Γ∞ =

{
±
(
a b+ na

c d+ nc

)}
.(3.3)

Together, these computations imply that every element of the double coset

Γ∞

(
∗ ∗
c d

)
Γ∞

has lower left entry ±c; in particular, that q | c in the RHS of (3.1) implies Γ∞γΓ∞ ⊆ Γ0(q),
so equality indeed holds in (3.1).
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That (3.1) is indeed a disjoint union follows from the fact that two double cosets Γ∞γΓ∞
and Γ∞γ′Γ∞ are either disjoint or identical. Namely, by (3.3), for a given coset Γ∞γ′Γ∞,
every lower left matrix entry is equal to |c′|, and every lower right matrix extry is equivalent
to d′ (mod |c′|). �

One can prove [5] that Pm(z) vanishes at all cusps not equivalent to ∞. For m ≥ 1, the
following result shows that it vanishes at the cusp ∞ as well. The statement of this result
is adapted2 from [3, Lemma 11.2].

Proposition 3.2. For m ≥ 1, the Poincaré series Pm(z) has the Fourier expansion

Pm(z) =
∑
n≥1

pm(n)e(nz),

with coefficients given by

pm(n) = δ(m,n) +
( n

m

) k−1
2

2π · ik
∑
c>0
q|c

c−1Sχ(m,n; c)Jk−1

(
4π

√
mn

c

)
,(3.4)

where δ(m,n) is the Kronecker delta function, Sχ is the Kloosterman sum defined in (3.7),
and Jk−1 is the Bessel function defined in (3.13).

Proof. Our starting point is the expansion

Pm(z) = e(mz) +
∑

16=γ∈Γ∞\Γ0(q)

χ(γ)jγ(z)
−ke(mγz).(3.5)

Define Γ′
∞ := {T n : n ∈ Z} to be the positive half of Γ∞. We will decompose the above coset

sum using a 1:1 correspondence between single and double coset representatives

{γ : Γ∞ 6= Γ∞γ ∈ Γ∞\Γ0(q)} = {γ′τ : Γ∞ 6= Γ∞γ′Γ∞ ∈ Γ∞\Γ0(q)/Γ∞, τ ∈ Γ′
∞}(3.6)

provided by (
a b

c d

)
7→

(
a b′

c d′

)
·
(
1 n

0 1

)
=

(
a b′ + an

c d′ + cn

)
;

here, we may assume c > 0 because of the left action of −I ∈ Γ∞, as well as because both
γ and −γ yield identical summands in (3.5); n and d′ are chosen so that d = cn + d′ with
1 ≤ d′ ≤ c; and b′ is chosen to satisfy ad′ − b′c = 1. This map (3.6) is a bijection because
of the double coset decomposition (3.1). Note that this correspondence factors a given coset
representative; in particular, the image of a coset representative is equal to the input. Using
this correspondence, we can decompose the Poincaré series (3.5) as follows:

Pm(z) = e(mz) +
∑

16=γ∈Γ∞\Γ0(q)/Γ∞

∑
τ∈Γ′

∞

χ(γτ)jγτ (z)
−ke(mγτz)

= e(mz) +
∑

16=γ∈Γ∞\Γ0(q)/Γ∞

∑
n∈Z

χ(γ)jγ(z + n)−ke(mγ(z + n)),

2Proposition 3.2 corrects a typo in the Kloosterman sum from the corresponding result in [3].
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because for all τ ∈ Γ′
∞, we have χ(τ) = 1 and jγτ (z) = jγ(τz)jτ (z) = jγ(τz). Next we use

Lemma 3.1 to transform this double coset sum into an infinite series, which yields

Pm(z) = e(mz) +
∑
c>0
q|c

∑
1≤d≤c
(c,d)=1

χ(d)
∑
n∈Z

(c(z + n) + d)−ke

(
m

(
a(z + n) + b

c(z + n) + d

))

= e(mz) +
∑
c>0
q|c

∑
1≤d≤c
(c,d)=1

χ(d)
∑
n∈Z

(c(z + n) + d)−ke

(
m

(
a

c
− 1

c(c(z + n) + d)

))
.

By our computation (3.3), we know a is uniquely determined modulo c due to the left action
of Γ∞, so these summands are well-defined by periodicity of the exponential map.

Let us denote by In(c, d; z) the innermost summand. We compute the Fourier transform
În(c, d; z) =

∫
R Iv(c, d; z)e

−nvdv to be

În(c, d; z) =

∫
R
(c(z + v) + d)−ke

(
am

c
− m

c(c(z + v) + d)
− nv

)
dv

= e

(
am

c
+

nd

c

)(∫ ∞+iy

−∞+iy

(cu)−ke

(
−m

c2u
− nu

)
du

)
e(nz)

via the change of variables cu = c(z+v)+d. Applying Poisson summation, we can continue:

Pm(z) = e(mz)
∑
c>0
q|c

∑
1≤d≤c
(c,d)=1

χ(d)
∑
n∈Z

e

(
am

c
+

nd

c

)(∫ ∞+iy

−∞+iy

(cu)−ke

(
−m

c2u
− nu

)
du

)
e(nz).

If we define the Kloosterman sum

(3.7) Sχ(m,n; c) :=
∑

1≤d≤c
(c,d)=1

χ(d)e

(
d−1m

c
+

dn

c

)
,

where d−1 is taken modulo c, then we can express this as

Pm(z) = e(mz) +
∑
n∈Z

∑
c>0
q|c

Sχ(m,n; c)

(∫ ∞+iy

−∞+iy

(cu)−ke

(
−m

c2u
− nu

)
du

)
e(nz)(3.8)

because the integral is independent of d.
We’ll now argue that the integral in (3.8) vanishes for n ≤ 0, by computing the following

limit:

(3.9) lim
t→∞

∫ t+iy

−t+iy

(cu)−ke

(
−m

c2u
− nu

)
du = 0.

We’ll accomplish this by shifting the contour upwards. Towards this, fix t > y and consider
the rectangle in H with vertices

−t+ iy, −t+ it, t+ it, t+ iy.

In the limit, the vanishing of the line integral along the base (3.9) of the rectangle will follow
once we show that the line integrals along the sides vanish,

(3.10) lim
t→∞

∫ ±t+it

±t+iy

(cu)−ke

(
−m

c2u
− nu

)
du = 0,
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as well as across the top,

(3.11) lim
t→∞

∫ t+it

−t+it

(cu)−ke

(
−m

c2u
− nu

)
du = 0.

In both integrals, because u ∈ H, we know −m/c2u ∈ H since this is a positive multiple
of a Möbius transformation; likewise, since n ≤ 0, either −nu ∈ H or −nu = 0. In both
cases, the exponential factor is bounded by 1. Furthermore, the polynomial factor |cu|−k is
bounded by t−k along both contours, so both integrals are bounded by 2t−k+1, which suffices
to show (3.10) and (3.11). By (3.8), this shows that the n’th Fourier coefficient of Pm(z) is
precisely

(3.12) pm(n) = δ(m,n) +
∑
c>0
q|c

Sχ(m,n; c)

∫ ∞+iy

−∞+iy

(cu)−k exp

(
−2πim

c2u
− 2πinu

)
du.

Now, it remains to recognize the Bessel function in the integral. In Appendix A, we verify
that for any δ > 0, the following is a suitable integral representation of the Jν-Bessel function:

(3.13) Jν(z) =

(
1
2
z
)ν

2πi

∫ δ−i∞

δ+i∞
t−ν−1 exp

(
t− z2

4t

)
dt.

Accordingly, we transform the integral in (3.12) via t = −2πinu and du = −dt/2πin, which
yields

(2πin)k−1

ck

∫ 2πny+i∞

2πny−i∞
t−k exp

(
t− 4π2mn

c2t

)
dt.

This has the shape of (3.13) for v = k − 1 and z = 4π
√
mn/c, which means the integral in

(3.12) is precisely

(2πin)k−1

ck
2πi(

1
2
· 4π

c

√
mn

)k−1
Jk−1

(
4π

√
mn

c

)
=

( n

m

)(k−1)/2 2π · ik

c
Jk−1

(
4π

√
mn

c

)
.

This yields (3.4). �

4. The Petersson inner product

In this section, we construct the Petersson inner product on the space of cusp forms. This
inner product is an integral with respect to the hyperbolic measure, which we now describe.

Lemma 4.1. On the upper-half plane H, the hyperbolic measure dµ, defined by

(4.1) dµ(z) :=
dx dy

y2
,

is invariant under the action of SL2(Z).

The differential form dµ(z) defined in (4.1) is a volume form on H, which means the
measure of a Borel set A ⊆ H is defined to be its integral with respect to this form, i.e.

µ(A) :=

∫
A

dµ(z).

That dµ(z) is SL2(Z) invariant means that µ(A) = µ(γA) for all γ ∈ SL2(Z).
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Proof of Lemma 4.1. Fix γ =

(
a b

c d

)
∈ SL2(Z) and write γ(z) = γ(x2 + iy2) = x1 + iy1.

For any Borel set A ⊆ H, we compute

(4.2) µ(γA) =

∫
γA

dx1dy1
y21

=

∫
A

∂(x1, y1)

∂(x2, y2)

dx2dy2
y21

,

using the change of variables formula. Using the Cauchy-Riemann equations, we can compute
that the Jacobian of a holomorphic function f(x+iy) = u(x, y)+iv(x, y) is precisely |f ′(z)|2,

f ′(z)f ′(z) =

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∂u

∂x

(
∂v

∂y

)
+

∂v

∂x

(
−∂u

∂y

)
=

∂(u, v)

∂(x, y)
.

In our case, the Jacobian in (4.2) is therefore |γ′(z)|2, which we compute as follows:

γ′(z) =
d

dz

(
az + b

cz + d

)
=

(cz + d)a− (az + b)c

(cz + d)2
=

1

(cz + d)2
.

Next we compute that y1 = y2/|cz + d|2, since

y1 = =a(x2 + iy2) + b

c(x2 + iy2) + d
= =(ax2 + b) + i(ay2)

(cx2 + d) + i(cy2)
· (cx2 + d)− i(cy2)

(cx2 + d)− i(cy2)
=

y2
|cz + d|2

.

So we can continue computing:

(4.3)
∫
A

∂(x1, y1)

∂(x2, y2)

dx2dy2
y21

=

∫
A

1

|cz + d|4
dx2dy2

y22/|cz + d|4
=

∫
A

dx2dy2
y22

= µ(A),

so µ(γA) = µ(A) as needed. �

We denote by Mk(q, χ) (resp. Sk(q, χ)) the space of modular (resp. cusp) forms of weight
k on Γ0(q), with character χ.

Proposition 4.2. Define the Petersson inner product on Mk(q, χ) to be

(4.4) 〈f, g〉 :=
∫
Γ0(q)\H

f(z)g(z)ykdµ,

where the integral is taken over a fundamental domain for the action of Γ0(q) on H. Then:
(1) 〈f, g〉 is well-defined;
(2) 〈f, g〉 is finite, and converges absolutely, as soon as one of f or g is a cusp form;
(3) Sk(q, χ) is a finite-dimensional Hilbert space with the Petersson inner product.

Accordingly, we define the Petersson norm ‖f‖ :=
√
〈f, f〉.

Proof. For any γ ∈ Γ0(q), we compute that

f(γz)g(γz)(=γz)k = χ(γ)(cz + d)kf(z) · χ(γ)(cz + d)kg(z) · (=z)k

|cz + d|2k
,

which is exactly f(z)g(z)(=z)k. This shows that the integrand in (4.4) in Γ0(q) invariant, and
is therefore independent of the choice of fundamental domain for the action of Γ0(q) on H.
Likewise, we computed in Lemma 4.1 that dµ is Γ0(q) invariant, which implies that the entire
integral is well-defined. Since cusp forms decay exponentially at the cusps, the integrand is
small in a neighborhood of the (finitely many) cusps, and bounded in the compact region
outside these neighborhoods. This implies that the inner product is finite so long as one
argument is a cusp form. It’s straightforward to check that Sk(q, χ) is a finite dimensional
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Hilbert space with this inner product, so long as one knows various fundamental facts about
modular forms (e.g. the space of cusp forms is finite dimensional.) �

5. Projection of cusp forms onto Poincaré series

We proved in Section 3 that the Poincare series Pm(z) with m ≥ 1 are cusp forms. Now
we verify that the span of the Poincaré series actually generates the space of cusp forms.

Proposition 5.1. Let f ∈ Sk(q, χ) be a cusp form with Fourier expansion

(5.1) f(z) =
∑
n≥1

af (n)e(nz).

Then for any m ≥ 1, we have

(5.2) 〈f, Pm〉 =
Γ(k − 1)

(4πm)k−1
af (m).

In particular, the Poincaré series with m ≥ 1 span Sk(q, χ).

Proof. By definition of the Petersson inner product, we have

〈f, Pm〉 =
∫
Γ0(q)\H

f(z)

 ∑
γ∈Γ∞\Γ0(q)

χ(γ)jγ(z)
−k
e(mγz)

 yk
dxdy

y2
.

By modularity, f(z) = f(γz)χ(γ)jγ(z)
−k, so moving f(z) inside the sum yields

〈f, Pm〉 =
∫
Γ0(q)\H

 ∑
γ∈Γ∞\Γ0(q)

|jγ(z)|−2kf(γz)e(mγz)

 yk
dxdy

y2
.

Using the identity =(γz)k = yk · |jγ(z)|−2k and interchanging the sum and the integral yields

〈f, Pm〉 =
∑

γ∈Γ∞\Γ0(q)

∫
Γ0(q)\H

f(γz)e(mγz)=(γz)k dxdy
y2

.

In each summand, we apply the variable transformation γz → z. Since the measure dµ is
SL2(Z) invariant, this yields

〈f, Pm〉 =
∑

γ∈Γ∞\Γ0(q)

∫
γ(Γ0(q)\H)

f(z)e(mz)=(z)k dxdy
y2

.

Next, we observe [4, pp. 318] that the union of the images⋃
γ∈Γ∞\Γ0(q)

γ(Γ0(q)\H)

is a fundamental domain for Γ∞\H. So in computing the integral above, we may assume
this domain coincides with the strip 0 ≤ x < 1, y > 0. This gives

〈f, Pm〉 =
∫ ∞

0

∫ 1

0

f(z)e(mz)yk−2dxdy.

Next, we substitute the Fourier expansion (5.1) for f(z) and simplify the exponentials.
This introduces the product

e(mz)e(nz) = e2π(−i)m(x−iy)e2πin(x+iy) = e2πi(n−m)xe−2π(n+m)y,
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so we separate the double integral as follows:

〈f, Pm〉 =
∑
n≥1

af (n)

∫ ∞

0

yk−2e−2π(n+m)ydy

∫ 1

0

e2πi(n−m)xdx.

We recognize that the integral with respect to x is 1 if n = m and 0 otherwise, hence

〈f, Pm〉 = af (m)

∫ ∞

0

yk−2e−4πmydy.

Next we recognize that the remaining integral with respect to y is the Γ function Γ(z) :=∫∞
0

xz−1e−xdx. If we make the substitution x = 4πmy, we may conclude that

〈f, Pm〉 = af (m)

∫ ∞

0

( x

4πm

)k−2

e−x

(
dx

4πm

)
=

Γ(k − 1)

(4πm)k−1
af (m),

which verifies (5.2)
This implies that if f is orthogonal to Pm, then af (m) = 0. Furthermore, if f is orthogonal

to every Pm, then af (m) = 0 for all m ≥ 1, which implies f = 0. This implies that the
orthogonal compliment of Span {Pm : m ≥ 1} within Sk(q, χ) is 0. Since the space spanned
by the Poincaré series is closed (this uses the finite-dimensionality of Sk(q, χ)) it follows that
Span {Pm : m ≥ 1} = Sk(q, χ). �

6. Petersson’s trace formula

We now present Petersson’s trace formula.

Theorem 6.1. Let F be any orthonormal basis of Sk(q, χ). For any n,m ≥ 1, we have

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈F

af (n)af (m) = δ(m,n) + 2πik
∑
c>0
q|c

c−1Sχ(m,n; c)Jk−1

(
4π

√
mn

c

)
.(6.1)

Proof. Since Pm is in Sk(q, χ), we can expand it as a linear combination of the f ∈ F ,
namely we have

(6.2) Pm =
∑
f∈F

〈Pm, f〉 f.

Petersson’s trace formula will follow from equating the n’th Fourier coefficients on both sides
of (6.2) in two different ways: on the LHS, the n’th Fourier coefficient is given explicitly by
(3.4) to be

δ(m,n) +
( n

m

) k−1
2

2π · ik
∑
c>0
q|c

c−1Sχ(m,n; c)Jk−1

(
4π

√
mn

c

)
.
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And on the RHS, using the inner product formula (5.2), we can compute∑
f∈F

〈Pm, f〉 f =
∑
f∈F

〈f, Pm〉f

=
∑
f∈F

Γ(k − 1)

(4πm)k−1
af (m)

∑
n≥1

af (n)e(nz)

=
Γ(k − 1)

(4πm)k−1

∑
f∈F

∑
n≥1

af (n)af (m)e(nz),

which has n’th Fourier coefficient equal to

Γ(k − 1)

(4πm)k−1

∑
f∈F

af (n)af (m).

Equating these expressions for the n’th Fourier coefficient yields

Γ(k − 1)

(4πm)k−1

∑
f∈F

af (n)af (m) = δ(m,n) +
( n

m

) k−1
2

2πik
∑
c>0
q|c

c−1Sχ(m,n; c)Jk−1

(
4π

√
mn

c

)
.

Multiplying this by (m/n)(k−1)/2 yields Petersson’s trace formula (6.1). �

7. Toy application of Petersson’s formula: a convergent series for τ(n)

In Theorem 6.1, take Sk(q, χ) = S12(1, 1), which is the space of cusp forms of weight 12
on SL2(Z). This space is one-dimensional, and is spanned by the modular discriminant

(7.1) ∆(z) = e(z)
∏
n≥1

(1− e(nz))24 =:
∑
n≥1

τ(n)e(nz).

An orthonormal basis for the space spanned by ∆(z) is given by f(z) = ∆(z)/ ‖∆‖. So,
applying Petersson’s trace formula with F = {f} yields

Γ(11)

(4π
√
mn)11

· τ(m)τ(n)

‖∆‖2
= δ(m,n) + 2π

∑
c≥1

c−1S1(m,n; c)J11

(
4π

√
mn

c

)
.

Specializing this formula to m = 1 and n > 1 yields a convergent series for τ(n),

τ(n) =
223π12n11/2 ‖∆‖2

10!

∑
c≥1

c−1S1(1, n; c)J11

(
4π

√
n

c

)
.

Note that the Ramanujan conjecture implies |τ(n)| � n
11
2
+ε, so this series is O(nε).

Appendix A. Useful integral representation of the Jν-Bessel function

Schläfli’s integral representation [6, Eq. 10.9.19] for the Bessel function of the first kind,
denoted Jν , states that

Jν(z) =

(
1
2
z
)ν

2πi

∫ (0+)

−∞
t−ν−1 exp

(
t− z2

4t

)
dt.
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Equivalently, this can be written as the integral over the clockwise ⊃-shaped contour from
−∞ + ih, to h + ih, to h− ih, to −∞− ih, where h > 0 is a fixed parameter. Denote this
contour by ⊃h, so our starting point will be the integral

(A.1) I(h; z) :=
∫
⊃h

t−ν−1 exp

(
t− z2

4t

)
dt.

Here we verify that this has the equivalent integral representation that we utilized in Propo-
sition 3.2 to compute the Fourier coefficients of the Poincaré series Pm.3 To simplify our
calculations, we assume that z, v ∈ R>0, which are true for our application. A reader who
seeks true enlightenment is encouraged to sketch the contours that arise in our argument.

Lemma A.1. The integral I(h; z) can also be written as

I(h; z) =
∫ h−i∞

h+i∞
t−ν−1 exp

(
t− z2

4t

)
dt.

Proof. We argue in two steps:
(1) We’ll shift the horizontal ray (−∞+ ih, h+ ih] to the vertical ray (h+ i∞, h+ ih].
(2) We’ll shift the horizontal ray [h− ih,−∞− ih) to the vertical ray [h− ih, h− i∞).

Both of these contour shifts will be justified by Cauchy’s integral theorem, as well as an
appropriate limiting process.

For step (1), let us take T > h. By Cauchy’s integral theorem applied to the square with
vertices

−T + ih, −T + iT, h+ iT, h+ ih,

it suffices to verify the following limits:

lim
T→∞

∫ −T+iT

−T+ih

t−ν−1 exp (t) exp

(
−z2

4t

)
dt = 0,(A.2)

as well as

lim
T→∞

∫ h+iT

−T+iT

t−ν−1 exp (t) exp

(
−z2

4t

)
dt = 0.(A.3)

For the integrands in (A.2), we have |t|−ν−1 ≤ T−ν−1 and | exp(t)| = exp(−T ). If we write
t = a+ ib, then we can compute that

(A.4) <
(
−z2

4t

)
=

−z2a

4(a2 + b2)
,

which implies | exp(−z2/4t)| ≤ exp(z2/4T ). Combining these estimates, we can bound∣∣∣ ∫ −T+iT

−T+ih

t−ν−1 exp (t) exp

(
−z2

4t

)
dt
∣∣∣ ≤ T · T−ν−1 · exp(−T ) · exp

(
z2

4T

)
→ 0,

so (A.2) indeed holds. We now turn our attention to (A.3). Over this contour, we have
|t|−ν−1 ≤ T−ν−1 and | exp(t)| ≤ exp(h), and by (A.4) we have | exp(−z2/4t)| ≤ exp(z2/4T ).
So in this case, we can bound∣∣∣ ∫ h+iT

−T+iT

t−ν−1 exp (t) exp

(
−z2

4t

)
dt
∣∣∣ ≤ 2T · T−ν−1 · exp(h) · exp

(
z2

4T

)
→ 0.

3This integral representation is well-known to the initiated, and is used throughout the literature, but I
didn’t see this proof in any of my standard references, so we include it here for completeness.
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This finishes step (1).
We now turn two step (2). By Cauchy’s integral theorem applied to the square with

vertices
−T − iT, −T − ih, h− ih, h− iT,

it suffices to show that

lim
T→∞

∫ −T−ih

−T−iT

t−ν−1 exp (t) exp

(
−z2

4t

)
dt = 0,(A.5)

as well as

lim
T→∞

∫ h−iT

−T−iT

t−ν−1 exp (t) exp

(
−z2

4t

)
dt = 0.(A.6)

For the integral in (A.5), we have |t|−ν−1 ≤ T−ν−1 and | exp(t)| = exp(−T ), and by (A.4)
we have | exp(−z2/4t)| ≤ exp(z2/8T ). Combining these estimates yields (A.5). And in the
integral in (A.6), we have |t|−ν−1 ≤ T−ν−1 and exp(t) ≤ exp(h), and by (A.4) we have
| exp(−z2/4t)| ≤ exp(z2/4T ). Combining these estimates indeed yields (A.6), which finishes
the proof. �
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