
Fourier Head:
Helping Large Language Models
Learn Complex Probability Distributions

Nate Gillman∗ Brown University

Daksh Aggarwal∗ Brown University

Michael Freeman Brown University

Saurabh Singh Google DeepMind

Chen Sun Brown University, Google DeepMind

Abstract

As the quality of large language models has improved, there has been increased interest in
using them to model non-linguistic tokens. For example, the Decision Transformer recasts
agentic decision making as a sequence modeling problem, using a decoder-only LLM to
model the distribution over the discrete action space for an Atari agent. However, when
adapting LLMs to non-linguistic domains, it remains unclear if softmax over discrete bins
captures the continuous structure of the tokens and the potentially complex distributions
needed for high quality token generation. We introduce a neural network layer, constructed
using Fourier series, which we can easily substitute for any linear layer if we want the
outputs to have a more continuous structure. We perform extensive analysis on synthetic
datasets, as well as on large-scale decision making and time series forecasting tasks. We also
provide theoretical evidence that this layer can better learn signal from data while ignoring
high-frequency noise. All of our results support the effectiveness of our proposed Fourier
head in scenarios where the underlying data distribution has a natural continuous structure.
For example, the Fourier head improves a Decision Transformer agent’s returns by 46% on
the Atari Seaquest game, and increases a state-of-the-art times series foundation model’s
forecasting performance by 3.5% across 20 benchmarks unseen during training. We release
our implementation at https://nategillman.com/fourier-head.

Fourier Head Learns Higher Quality Densities

Figure 1: We task an MLP with learning to approximate a continuous bimodal density using a categorical
distribution and a cross entropy objective. We observe that a standard linear classification head fails to
distinguish between the two modes, and overfits to high-frequency noise in the training set. In contrast, our
proposed Fourier head learns a smoother, more accurate categorical distribution.

∗Equal contribution. Correspondence to: nate_gillman@brown.edu, chensun@brown.edu.

1

ar
X

iv
:2

41
0.

22
26

9v
1

 [
cs

.L
G

]
 2

9
O

ct
 2

02
4

https://nategillman.com/fourier-head

1 Introduction

Human language can be viewed as a discretization for a continuous, often probabilistic representation of the
world that is construed in our mind (Spivey, 2008). The continuous structure can be partially captured
by language models with their token embeddings, where “nearby” tokens are embedded to have latent
representations with high cosine similarities. The embeddings themselves are acquired as a result of the
data-driven learning process. Can we, based on rich prior knowledge about the continuous world, inform
the language model about the underlying continuity of its inputs, like the fact that the word “emerald” is
more similar to “shamrock” than “pine” when they are used to describe different shades of green? As large
language models (LLMs) have evolved into “foundation models” that are adapted to a diverse range of tasks,
tokens that are a priori continuous are more essential than ever, for example for arithmetic computations (Liu
et al., 2023), decision making with continuous or discrete actions (Chen et al., 2021), future anticipation
and time-series forecasting (Ansari et al., 2024), or simply drawing random numbers given a probability
distribution (Hopkins et al., 2023).

We view the problem of informing LLMs to utilize the continuity prior from the perspective of probability
density estimation. For simplicity, we adopt the standard next token prediction framework whose training
objective is softmax cross entropy. Assuming non-overlapping vocabulary, continuous values can be dis-
cretized via binning (Ansari et al., 2024). On one hand, the linear head adopted by LLMs independently
projects each token into probabilities, and has the expressive power to flexibly approximate arbitrary proba-
bility density functions subject to the “quantization” errors. The linear head however does not consider any
continuous structure that resides among the tokens (i.e. a random re-shuffle of the tokens in the vocabulary
would not change the predictions). On the other hand, a head based on a parameterized distribution (e.g.
Gaussian or Gaussian Mixtures) naturally incorporates the continuous structure, but is often too simple (and
overly “smooth”) to account for multi-modal distributions for future prediction or decision making. Can we
design a head that is both expressive and incorporates continuous structures?

We introduce the Fourier head, motivated by Fourier series as universal function approximators. The
Fourier head learns a continuous probability density function, and returns a discrete ap-
proximation of it. Intuitively, returning a discretization of a continuous density in this way allows the
classification head to better model the low-frequency signals from the training data, because overfitting to
high-frequency noise is explicitly penalized by the Fourier head’s built-in regularization. At a high level, the
Fourier head inputs x ∈ Rn, uses a linear layer to learn the coefficients for a Fourier series with N frequencies
over [−1, 1], and quantizes the interval [−1, 1] into m equal bins. Then, the Fourier head evaluates the learned
Fourier PDF at those m bin center points, and returns those m likelihoods as a categorical distribution.

Our main contributions are as follows.

1. First, we reveal the underlying principle on the trade-off between the Fourier head’s expressive power
and the “smoothness” of the predicted distributions. We have proven a theorem which demonstrates
a scaling law for the Fourier head. Namely, as we increase the quantity of Fourier coefficients that the
Fourier head learns, the layer is able to model increasingly more complicated distributions; however,
the Fourier head will necessarily fit to more high-frequency noise, thereby outputting categorical
distributions which are less smooth.

2. Second, we propose a practical implementation of the Fourier head that allows us to handle sequen-
tial prediction tasks by modeling complex multi-modal distributions. Alongside our implementation,
we propose strategies to improve the layer’s performance, including Fourier coefficient norm regu-
larization, weight initialization, and the choice of how many Fourier frequencies to use.

We demonstrate the effectiveness of the Fourier head on two large scale tasks, where intuitively a continuity
inductive bias over the output dimensions ought to help the model’s generation performance. In the first
task, an offline RL agent which uses a decoder-only transformer to model the next-action distribution for
an Atari game, we improve returns by 46%. And in the second, we outperform a state-of-the-art time series
foundation model on zero-shot forecasting by 3.5% across a benchmark of 20 datasets unseen during training.

2

2 Fourier Head

2.1 Fourier Head: Motivation

When practitioners apply LLMs to model complex probability distributions over non-linguistic tokens, a
standard technique is to quantize the latent space into m tokens and learn a conditional categorical distri-
bution over those tokens. We share two examples here:

• The Decision Transformer (Chen et al., 2021) models an Atari agent’s behavior in the Seaquest game
by learning a categorical distribution over the 18 possible actions (move left, move right, shoot left,
etc.). They use an decoder-only transformer architecture.

• The Chronos time series foundation model (Ansari et al., 2024) models the distribution of next
numerical values by quantizing the closed interval [−15, 15] into 4096 bins, and learning a categorical
distribution over those bins. They use an encoder-decoder transformer.

In a pure language modeling task, token ID 1000 and token ID 1001 likely represent unrelated words.
However, in a task where the token IDs represent numerical values, the token ID 1000 and 1001 would
represent numbers that are close together.

The final layers of an LLM for such a task are generally a linear layer, followed by softmax, followed by
cross entropy loss. We hypothesize that in scenarios where nearby token IDs encode similar items, an
inductive bias that encourages them to have similar probabilities will improve performance. A generic linear
layer learns an unstructured categorical distribution and thereby allows more arbitrary probabilities. In
this work, we propose to give the model this inductive bias by letting the classification head
learn a categorical distribution as the discretization of a continuous learned function from a
suitably flexible class. In this paper, we consider the very flexible class of truncated Fourier series with
N frequencies. These are functions of the form

f(x) = c0 +
N∑

k=1
ck exp(ikπz). (2.1)

Fourier series are a classical tool for solving quantitative problems (Stein & Shakarchi, 2003) because func-
tions like Equation 2.1 are universal function approximators, with the approximation improving as N in-
creases.

2.2 Fourier Head: Definition

We now propose a replacement for the generic linear layer token classification head, built using Fourier
series. We call our replacement the Fourier Series Classification Head, or the Fourier head for short.
The Fourier head inputs any vector x ∈ Rn, and outputs a categorical distribution in Rm. For a high level
summary of how it works–the Fourier head inputs x ∈ Rm, uses a linear layer to extract the coefficients for
a Fourier series over [−1, 1], quantizes the interval [−1, 1] into m equal bins, evaluates the learned Fourier
PDF at those m bin centerpoints, and returns those m likelihoods as a categorical distribution. We formally
define this layer in Algorithm 1, and we present a concrete low-dimensional demonstration of the Fourier
head in action in Section 2.3.

2.3 Fourier Head: Motivating Example

To illustrate a simple problem setting where the design of the Fourier head is appropriate, we use it as
a drop-in replacement for a linear classification head in the Audio Spectrogram Transformer (Gong et al.,
2021). We consider the task of beats per minute (BPM) classification for metronome-like audio samples
(Wei et al., 2024) within the tempo range {50, 51, . . . , 210}. While this task is not difficult, we use this audio
classification task to illustrate some of the design choices one can make when using the Fourier head. In this
case, it is natural to group the BPMs into contiguous bins {[50, 54], [55, 59], . . . } and use the Fourier head

3

Algorithm 1 Fourier head
Hyperparameters: the input dimension n, output dimension m, number of frequencies N

Initialization: define a linear layer A : Rn → R2(N+1) // maps input to autocorrelation coefficients
INPUT x = (x1, . . . , xn) ∈ Rn

(α0, β0, . . . , αN , βN)← Ax

ak ← αk + iβk ∈ C, for every k = 0, . . . , N // compute autocorrelation coefficients
ck ←

∑N−k
ℓ=0 aℓa

∗
ℓ+k ∈ C, for every k = 0, . . . , N // compute Fourier coefficients

p(z) = 1
2 + ℜ

(∑N
k=1

ck

ℜ(c0) exp(ikπz)
)

// define Fourier PDF over [−1, 1]

bk ← (−m + 1 + 2k)/m, for every k = 0, . . . , m− 1 // define m bin centerpoints
yk ← p(bk)∑m−1

j=0
p(bj)

, for every k = 0, . . . , m− 1 // evaluate PDF at m bin centerpoints

OUTPUT (y1, . . . ym) ∈ Rm // by design,
∑m

k=1 yk = 1 and each yk ≥ 0

to classify them. These bins have a natural continuous structure, which is where the Fourier head performs
well. We also expect that the categorical distribution over possible BPMs for a given audio clip ought to be
unimodal and therefore require few frequencies to approximate. In fact, our best performing model for this
example uses only one frequency.

We initialize the Audio Spectrogram Transformer with pretrained weights from AudioSet (Gemmeke et al.,
2017), and we train two different models–one with a standard linear classification head, and one with the
Fourier head. The Fourier head outperforms the linear classification head by an F1 score improvement of
+118%. We attribute this success to the inductive bias of continuity that the Fourier head imparts. In
Figure 2 we present the learned probability masses of both heads on the same input sample. This graph
illustrates that the Fourier head learns smoother PMFs than the linear head, a concept which we will later
formalize and explore.

Audio Classification Task: Learned Linear vs. Fourier PMFs

Figure 2: Comparison between the PMF learned by the linear head, and the Fourier head with 2 frequencies,
for the toy BPM classification task, on a single audio example. We observe that the Fourier head learns a
smoother categorical distribution over its predicted values, and is better centered around the ground truth
label. We also note the small mini-sine wave artifacting on the left side of the Fourier model, which tends
to occur when using few frequencies.

2.4 Fourier Head: Considerations for Using it During Training

We highlight the main design choices for a user when applying the Fourier head in practice.

Training objective: The Fourier head inputs a signal x ∈ Rn and extracts from that signal an intermediate
representation of a probability distribution px(z) defined over z ∈ [−1, 1]. This probability distribution has a
closed formula equal to a Fourier series. In our experiments, we optimize the parameters of the Fourier PDF
by discretizing it over the latent space and training using cross entropy loss. However, we should note that
the Fourier layer allows MLE training directly on continuous values, by evaluating the Fourier PDF directly

4

on the ground truth value in the latent space. But for consistency of comparison, and to demonstrate how
easy it is to swap the Fourier head with a linear layer, we use softmax cross-entropy loss as the objective.

Choice of hyperparameter N : The Fourier head has one crucial hyperparameter–namely, the number
of frequencies. How should one choose this in practice? We offer Theorem 3.3 as guiding principle beyond
simple trial and error. This result provides a scaling law which formalizes the smoothness-expressive power
trade-off in choosing the number of frequencies. In general, using more frequencies leads to more expressive
power, and generally better success metrics, but at the cost of a learning less smooth densities, as well as
more model parameters.

Fourier regularization: A generic Fourier series such as Equation 2.1 has Fourier coefficients which decay
quickly enough for the infinite series to converge absolutely. For example, for the class of Fourier series
which have continuous second derivatives, the Fourier coefficients decay on the order of 1/k2. To impose
this regularity assumption on the learned Fourier densities, we follow (De la Fuente et al., 2024) and add
a regularization term to the loss to prevent higher order Fourier coefficients from growing too large during
training. This helps ensure that the learned Fourier PDF doesn’t overfit to noise in the data. In the notation
from Algorithm 1, this means adding a regularization term of γ · 2π2

m

∑m
k=1 k2|cn|2 to the loss function, where

γ is a hyperparameter. We find that in the low-frequency domain, using γ = 0 can give better performance
than γ > 0; and in the high frequency domain, γ = 10−6 works well.

Binning strategy: The choice of how we bin the data can affect performance significantly. As we already
discussed, we should only apply the Fourier head when nearby bins are “similar” in some sense. This means
we should order our bins in a semantically meaningful ordering. Further, in the case where the bins represent
quantized numerical values over a continuous latent space, it can be helpful to use a “mixed-precision” binning
strategy. For instance, if we want to model all values from [−15, 15], but we find that most values lie in the
range [−1, 10], then we should allocate a higher proportion of bins to the dense data interval. Specifically,
if we would like to use m total bins to quantize the data, then we control the allocation of bins using a
hyperparameter d ∈ [0, 1), where ⌊d · m⌋ uniformly spaced bins are allocated to the sparse data interval
while the remaining m− ⌊d ·m⌋ bins are allocated to the dense range (estimated from training data). This
is motivated and supported by the Fourier theory as well, since by increasing precision in the dense data
range we are effectively de-localizing the quantized data distribution, which leads to a more localized Fourier
spectrum. This lets us obtain a quicker decay of higher frequency content, which ensures that we can more
effectively learn the same distribution with lower-frequency Fourier heads.

Weight initialization: The learned parameters for the Fourier head consist of the learned linear layer
which extracts autocorrelation parameters. In PyTorch, the linear layers uses the He initialization (He et al.,
2015) by default, which ensures that the linear layer outputs values close to zero in expectation. Similarly,
it’s better for the learning dynamics for the Fourier densities to be initialized to uniform p(z) ≈ 1/2. We
accomplish this by dividing the weights and biases by a large number, such as 1000, after He initialization;
this guarantees that the linear layer outputs very small values, so that Fourier coefficients output from the
autocorrelation step are very small as well.

3 Theory

3.1 “Smoothness”: A Metric for High Frequency Content

In this section we propose a smoothness metric which inputs a categorical distribution y = (y1, . . . , ym) ∈ Rm,
and assigns a numerical value depending on how smooth it is. The score will output 0 if y is the smoothest
possible categorical distribution, and larger values if y is less smooth. We will first specify what we mean by
“smooth”:

Heuristic 3.1. We say a function is smooth if it contains very little high-frequency information.

For example, the uniform categorical distribution contains no high-frequency information, so it is the
smoothest possible function, and should get a smoothness score of 0. In contrast, a categorical distribu-
tion containing samples from sin(100πx) contains lots of high frequency information, so it should get a

5

smoothness score greater than 0. We seek to define a metric which measures smoothness according to
Heuristic 3.1.

We will first develop a smoothness metric in the general case of a function f : [a, b] → R, then specialize
to case of the discrete categorical distribution that we consider in the paper. If we let ασ ∈ R be weights
satisfying

∫∞
0 ασdσ = 1, and D be some measure of discrepancy such as L2, and let gσ(x) ∗ f(x) denote

the convolution of f(x) with a Gaussian kernel of standard deviation σ, then it is reasonable to define the
smoothness of f to be the quantity

s(f) :=
∫ ∞

0

∫ b

a

ασD[f(x), gσ(x) ∗ f(x)]dxdσ. (3.1)

In this expression, the discrepancy D[f(x), gσ(x) ∗ f(x)] measures how different f(x) is from a Gaussian-
smoothed version of itself. Because the Gaussian is a low-pass filter, we can interpret Equation 3.1 as saying,
at a high level, that a function is “smooth” if it doesn’t change that much when you remove high frequency
content from it.

In our experiments, we consider discrete categorical distributions, and wish to evaluate how smooth they are
in a numerically tractable way. Accordingly, we define a specific case of this as follows.
Definition 3.2 (Smoothness metric for categorical distributions). Suppose y = (y1, . . . , ym) ∈ Rm is a
categorical distribution, so every yk ≥ 0 and

∑m
k=1 yk = 1. Denote by gσ ∈ R2m−1 the discrete Gaussian

kernel of standard deviation σ and radius m − 1. Define the weights ασ = 6/π2σ2. Then we define the
smoothness of y to be the constant

s(y) :=
∞∑

σ=1
ασ∥y − gσ ∗ y∥2. (3.2)

We direct the curious reader to Appendix B, where we conduct additional experiments to justify this choice
of smoothness metric for our experiments.

3.2 A Scaling Law for the Fourier Head, in Frequency-aspect

In this subsection, we share a theorem that analyzes the quality of the Fourier head as the quantity of
frequencies changes. We refer to this as the Fourier head scaling law as it quantifies the trade-off
between modeling capacity and smoothness as the number of frequencies increases. On one hand, it is a
celebrated result from Fourier analysis that a Fourier series with a greater number of frequencies models
a larger class of functions; but on the other hand, we show that increasing frequencies also incurs loss in
smoothness. This is to be expected, as we designed our smoothness metric with the intention of identifying
a distribution as less smooth if it contains more high-frequency information.
Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output dimen-
sion m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn, and
denote by fx : [−1, 1] → R the optimal conditional distribution that we would like the Fourier head
to approximate for this input. Suppose that there exists some t ≥ 2 such that the Fourier coefficients
of fx decay on the order of 1/kt. Denote by fx,N the truncation of fx to its first N frequencies,
denote by b⃗ ∈ Rm the m bin centerpoints in [−1, 1], and denote by y(N) = fx,N (⃗b)/(fx,N (b0) + · · ·+
fx,N (bm−1)) ∈ Rm the discretization of fx,N into m bins. Then, there exist constants C1, C2 > 0
such that

s(y(N)) = C1 −
C2

N2t−1 + O(1/N2t). (3.3)

6

Note that the smoothness scaling law asymptotic in Equation 3.3 shows that as N increases, so does s(y(N)).
Further, note that if the Fourier spectrum of the underlying distribution decays quicker (controlled by t)
then the rate at which smoothness degrades is slower; this is because if what we are learning has little high
frequency content, then increasing the frequencies shouldn’t affect the smoothness of the learned distribution
very much. In part (2), our assumption that the Fourier coefficients decay at least quadratically is reasonable
since if fx is at least twice continuously differentiable, we already know its Fourier coefficients corresponding
to the k-th frequency are in O(1/k2) (Stein & Shakarchi, 2003, Ch.2, Cor. 2.4). Our Fourier quadratic
weight decay regularization helps toward ensuring that this condition is met in practice as well. We include
a full proof of this result in Appendix A.

4 Toy Example: Learning A Continuous Conditional Distribution

We demonstrate the advantage of using the Fourier head to learn a probability distribution for a simple task:
learning the conditional distribution of the third number in the sequence given the first two. Here we will
use q(z) to denote the quantization of z.

Dataset: We create 3 synthetic datasets, which we name Gaussian, GMM, and GMM-2. Each dataset
consists of 5000 quantized triples {(q(x), q(y), q(z))} ⊆ [− 1, 1]3. Crucially, z is sampled from a distribution
which is conditioned on x and y, and we have an explicit closed formula for this distribution. By design,
the Gaussian dataset is unimodal in z, whereas the more challenging GMM and GMM-2 datasets are not
unimodal. Full details about the datasets can be found in Appendix C.

Task: Predict the conditional distribution of q(z) given the quantized tuple (q(x), q(y)).

Model architecture: Our model is an MLP with ReLU activations and one hidden layer, which maps
R2 → R64 → R32 → R50. The output of the model has dimension 50 because we quantize the interval
[−1, 1] into 50 bins. For the baseline, the classification head is a linear layer followed by a softmax; for the
Fourier model, the classification head is the Fourier head. We sweep over frequencies N = 2, 4, . . . , 20, and
we consider regularization γ ∈ {0, 10−6}. We train all models using cross entropy loss.

Model evaluation: We use three metrics for evaluation. Let P(x, y) denote the fixed conditional distribu-
tion of z given (x, y). Our first metric is the average KL divergence DKL(q(P2(x, y))||M(q(x), q(y))), where
M(q(x), q(y)) denotes the predicted categorical conditional distribution of q(z), and q(P(x, y)) is the quan-
tized approximation of P(x, y), where P(x, y) is the fixed conditional distribution, obtained by evaluating
the density function of P(x, y) at the bin centers, multiplying by the bin width, and finally scaling by the
sum of the likelihoods. Our second metric is MSE. To compute this, we use the point of maximum likelihood
under the learned categorical distribution as a prediction for q(z) and compute the difference between the
prediction and true value in the test set. And our third metric is smoothness.

KL Divergence (↓) Smoothness (↓)
Dataset Linear Fourier Linear Fourier
Gaussian 0.170 ± 0.052 0.116 ± 0.043 0.116 ± 0.049 0.057 ± 0.011
GMM 0.185 ± 0.037 0.091 ± 0.004 0.078 ± 0.041 0.034 ± 0.010
GMM-2 0.238 ± 0.032 0.146 ± 0.033 0.068 ± 0.022 0.038 ± 0.007

Table 1: We compare metrics between the linear head, and the Fourier head with 12 frequencies and no
regularization (i.e. γ = 0), for every dataset in our toy example. We observe that the Fourier head
outperforms the linear head across all metrics. Notably, using Fourier head improves the KL divergence
(the primary success metric) on average by approximately 40%. We aggregate metrics over 4 different seeds
and report the standard deviation.

Results: The metrics for the best performing model on each dataset are reported in Table 1. Figure 3
presents sample visualizations of the learned conditional distributions alongside the true densities. And in
Appendix C, we present the results of a study on the impact of number of frequencies and Fourier regulariza-
tion. Notably, this study provides empirical evidence for the Fourier head scaling law in Theorem 3.3, as it
demonstrates that for all datasets, as frequency increases, the smoothness degrades, and model performance

7

Figure 3: Comparison between the PMFs learned by the linear head, and the best performing Fourier head,
for each of the datasets in the toy example. We observe that the Fourier head learns a smoother categorical
distribution than the linear head over its predicted values. Furthermore, the Fourier head better fits the
true conditional PDF; this is reflected in our KL divergence and smoothness metrics.

improves until it reaches a saturation point. Crucially, we observe that the Fourier head flexibly learns all
three distributions better than the linear baseline does. We note that the Fourier head outperforms the
linear head on MSE as well; for details, see Appendix C.

5 Large-Scale Study: Offline Reinforcement Learning

The Decision Transformer (Chen et al., 2021) casts the problem of reinforcement learning as sequentially
modeling rewards, states, and actions. Here, we study the performance of the Decision Transformer on the
Seaquest game in the Atari (Bellemare et al., 2013) benchmark. The Seaquest game contains 18 actions, with
two groups of eight actions that have a natural “closeness” metric defined on them: move left, up left, up, up
right, right, down right, down, down left; as well as shooting in those eight directions. In their architecture,
a decoder-only language model (Radford et al., 2018) encodes the context and then maps it through a linear
layer, outputting a categorical distribution over the 18 possible actions. In our study, we replace that linear
classification head with a Fourier head. Intuitively, this ought to give the model the prior that actions like
“move left” and “move up left” are semantically similar, and therefore should have similar likelihoods. Our
study confirms that the Fourier head outperforms the linear head in returns obtained by as much as 46%,
in the reward conditioned setting considered in the paper, using identical training hyperparameters.

Dataset: We use the same dataset from the original Decision Transformer implementation (Chen et al.,
2021). This dataset consists of 500k transitions experienced by an online deep Q-network agent (Mnih et al.,
2015) during training on the Seaquest game.

Task: In the Seaquest game, the agent moves a submarine to avoid enemies, shoot at enemies, and rescue
divers. The Seaquest game contains 18 actions: move left, up left, up, up right, right, down right, down,
down left; as well as shooting in those eight directions; as well as no move, and a generic fire move. We
consider this task in the Offline RL setting. The agent observes the past states, actions, and rewards, as
well as the return-to-go, and attempts to predict the action that matches what an agent operating like the
dataset would likely do.

Model architecture: (Chen et al., 2021) used the GPT-1 model (Radford et al., 2018) to autoregressively
encode the context, which is then fed through a linear layer of dimension 18, and the model ultimately
optimizes the cross entropy loss between the action logits and the ground truth action from the dataset. We
refer to this model as the linear baseline. To create our Fourier-N version, we simply replace the linear head

8

with a Fourier head with N frequencies and Fourier regularization γ = 10−6. In our experiments we consider
frequencies N ∈ {2, 4, 6, 8, . . . , 30, 32}.

Model evaluation: We present mean reward totals for rollouts across 4 seeds. In Table 2 we can see that
normalized returns are as much as 46.2% higher for sufficiently large frequencies. In Figure 4, we can see
that, as we increase the quantity of frequencies, the returns increase and the learned PMFs become less
smooth, in accordance with Theorem 3.3. Qualitatively, we can also see that in Figure 5 the PMFs learned
by the Fourier head are smoother.

Decision Transformer Model Normalized Return (↑) Smoothness (↓)
Linear 2.53 ± 0.63 0.48 ± 0.14
Fourier-8 2.78 ± 0.47 0.22 ± 0.04
Fourier-14 3.70 ± 0.47 0.39 ± 0.11

Table 2: We present Decision Transformer results for the linear baseline, and for two representative Fourier
head experiments. We observe that the Fourier head with 14 frequencies improves on the linear baseline by
46.2%. We report normalized return values (mean, and standard deviation) from (Chen et al., 2021), and we
compute all other metrics ourselves. We compute the returns (mean and standard deviation) by averaging
over four seeds, and we compute smoothness using all the evaluation rollouts from a single seed.

Figure 4: We present empirical results for how the quantity of Fourier frequencies impacts returns and
smoothness for the imitation learning task. For normalized returns, higher is better; for smoothness, lower is
better. We can see that the Fourier agent achieves higher normalized returns than the linear baseline agent
when sufficiently many Fourier frequencies are used, while still learning smoother next-action distributions.

Figure 5: We present example next action distributions for a single step in the Decision Transformer test
split. The Fourier agent with 8 frequencies produces a “clump” of actions that is semantically meaningful.
Namely, this agent almost certainly wants to shoot in the down right or right direction, presumably because
there is a submarine in that direction. In contrast, the linear agent’s next-action distribution doesn’t clearly
depict a strategy, and incorrectly assigns higher likelihoods to incorrect actions. Because the Fourier head
outputs a smoother PMF, it learns to concentrate more probability mass near the correct action.

9

Chronos Time Series Model MASE (↓) WQL (↓) Smoothness (↓)
Linear 0.883 0.750 0.1689 ± 0.1087
Fourier-64 0.875 0.798 0.0032 ± 0.0012
Fourier-128 0.872 0.767 0.0068 ± 0.0035
Fourier-256 0.859 0.755 0.0139 ± 0.0087
Fourier-550 0.852 0.749 0.0283 ± 0.0224
Fourier-550 (no regularization) 0.861 0.753 0.0286 ± 0.0219
Fourier-550 (uniform precision binning) 0.873 0.747 0.0395 ± 0.0252

Table 3: We present large-scale experiments on Chronos time series forecasting. Notably, every Fourier
model outperforms the linear baseline on MASE and smoothness metrics. We can see that within the
Fourier model class, decreasing the number of frequencies lets you trade off the continuity of the learned
probability mass functions (smoothness) for the quality of the forecasts (MASE, WQL). In the bottom two
rows, we present an ablation for our large-scale experiments on Chronos time series forecasting. The best
overall performing Fourier-550 model uses Fourier regularization and mixed precision binning, which are
both techniques informed by Fourier analysis. We observe that both of these interventions improve the
MASE, but have minimal effect on the WQL. Note that the choice of binning strategy doesn’t affect the
performance of the linear baseline.

6 Large-Scale Study: Probabilistic Time Series Forecasting

The Chronos time series foundation models (Ansari et al., 2024) “learn the language of time series”. They do
this by approaching time series forecasting as language modeling, by tokenizing the quantized number line,
learning token embeddings for each of those quantized values, and finally learning a categorical distribution
to decide what the next value ought to be. This model is built on top of the encoder-decoder T5 model (Raffel
et al., 2020). In particular, this model normalizes time series values to the range [−15, 15] and quantizes
this interval into 4096 tokens. As usual for language modeling, the final layer is a linear map which learns
a categorical distribution over next tokens. In particular, we observe that token i represents a number very
close to tokens i− 1 and i + 1. However, we note that there is no inductive bias in the T5 architecture which
pushes their likelihoods to be similar. This is not a hypothetical problem; in Figure 9 (Appendix), we can
see that the linear next-token prediction PMFs fit to the noise, and appear very jagged.

The motivation for replacing the linear head with the Fourier head is to “smooth” out the
distribution in the left side of Figure 9, to help the forecasting model better learn the signal,
and ignore the noise. In this figure, we can see that the Fourier head accomplishes this successfully.

In this section, we study how the performance of the Chronos time series foundation model changes when
we pre-train using the Fourier head, instead of the linear head. For all of the frequencies that we consider,
the Fourier head outperforms the Chronos linear baseline on the MASE metric, while learning next token
multinomials which are at least 8x smoother, with fewer parameters than the baseline.

Dataset: We use the same training dataset for large-scale pretraining that Ansari et al. (2024) used. We
gather an evaluation benchmark of 20 time series datasets which were not seen during training. These 20
come from the zero-shot eval from (Ansari et al., 2024). The reader can check Appendix D for details on
the training and evaluation datasets we used.

Model architecture: We use the Chronos model, which is built using the T5 architecture (Raffel et al.,
2020). The original model has a linear classification head. For our study, we will replace this with a Fourier
head with frequencies N = 64, 128, 256, 550. We use mixed precision binning; this is informed by an analysis
of the Fourier spectrum of the next-token distribution, as described in Section 2.4. We also use Fourier
quadratic weight decay regularization with γ = 10−6. For the task, the model learns to input time series
context of length 512, and output a probabilistic forecast of length 64.

Model evaluation: We have two sets of metrics: model performance from (Ansari et al., 2024) (MASE
measures the accuracy of median forecast, and WQL measures the quality of the probabilistic forecast),
as well as our smoothness metric. Our Fourier metrics in Table 3 demonstrate that every Fourier model

10

outperforms the linear baseline for MASE and smoothness. And for the largest Fourier model that we
consider, Fourier outperforms linear on WQL as well. We also conduct an ablation study; the results in
Table 3 show that mixed precision binning and regularization improve the MASE and smoothness for the
Fourier head.

7 Related Work

LLMs outside of natural language domains: LLMs are often adapted to domains beyond natural
language, as general purpose sequence models. For example, they have been used in protein synthesis
(Madani et al., 2023), time series forecasting (Ansari et al., 2024; Das et al., 2024; Jin et al., 2024), music
generation (Dhariwal et al., 2020; Agostinelli et al., 2023; Copet et al., 2023; Yuan et al., 2024), and as well
as in decision making (Li et al., 2022; Chen et al., 2021).

We consider three categories to adapt LLMs to non-language domains: when the output of a language-
trained LLM is used as a feature for some out-of-domain task; when a language-pretrained LLM is fine-
tuned on a domain-specific task; and when an LLM architecture is trained on a domain-specific dataset from
scratch. Our work directly considers the latter method of LLM adaptation, particularly in settings where the
outputs approximate continuous values. We note that using LLMs to model numerical functions has seen
success in continuing sequences (Mirchandani et al., 2023) but has been challenging for modeling samplers for
probability distributions (Hopkins et al., 2023). In a related direction, Razeghi et al. (2022) found that model
performance on numerical reasoning tasks is correlated with the frequency of specific numbers in its corpus.
Further, some have re-framed continuous regression as a descretized classification problem to leverage LLMs
in numerical modeling contexts (Song et al., 2024). While even frozen LLMs with no further training show
interesting empirical results as regressors (Vacareanu et al., 2024), there is a conceptual mismatch between
the downstream task and model construction because tokenized numerical values trained using cross-entropy
loss does not explicitly enforce numerical relationships between the tokens.

Fourier series in neural networks: Many works leverage the Fourier transform as a data pre-processing
step or a deterministic transformation within the network, or use Fourier analysis to motivate design choices.
It is far less common to learn the Fourier series directly. De la Fuente et al. (2024) learned marginal
univariate densities parameterized using a Fourier basis; our work extends their Fourier Basis Density model
to multivariate settings with an autoregressive scheme. Our method learns conditional univariate densities
using a Fourier basis, where the coefficients of the Fourier density model are input dependent. Sitzmann et al.
(2020) proposed sinusoidal activation functions, which can be seen as learning the frequencies of a Fourier
series; in contrast, we fix the frequencies to the canonoical choice {1, 2, . . . , N}, and learn the amplitudes.
This allows the Fourier head to directly benefit from approximation results from Fourier analysis.

8 Conclusion

We propose the Fourier head and demonstrate its positive impact on performance on several tasks. We
prove a scaling law that characterizes the trade-off between the model’s expressivity and the smoothness
of its output distribution. The Fourier head is a modular architecture that can be easily added to existing
models that would benefit from the continuity inductive bias that the head imparts. The Fourier head extends
the already extensive reach of LLMs into more diverse, numerical, and probabilistic domains. Future work
includes exploring alternative training objectives that do not depend on discretizing probability density
functions, and incorporating the Fourier head in general-purpose LLM training, where the head can be
adaptively employed when needed.

Acknowledgments

We would like to thank Jona Balle, Alfredo De la Fuente, Calvin Luo, Singh Saluja, Matthew Schoenbauer,
and Megan Wei for the useful discussions. This work is supported by the Samsung Advanced Institute of
Technology, NASA, and a Richard B. Salomon Award for Chen Sun. Our research was conducted using
computational resources at the Center for Computation and Visualization at Brown University.

11

References
Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon, Qingqing

Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating music from text.
arXiv preprint arXiv:2301.11325, 2023.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-
sandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al. Chronos:
Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer science & business
media, 1991.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. Simple and controllable music generation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for time-
series forecasting. In International Conference on Machine Learning, 2024.

Alfredo De la Fuente, Saurabh Singh, and Johannes Ballé. Fourier basis density model. arXiv preprint
arXiv:2402.15345, 2024.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. Juke-
box: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events.
In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

Yuan Gong, Yu-An Chung, and James Glass. Psla: Improving audio tagging with pretraining, sampling,
labeling, and aggregation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021.
doi: 10.1109/TASLP.2021.3120633.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

Aspen K Hopkins, Alex Renda, and Michael Carbin. Can llms generate random numbers? evaluating llm
sampling in controlled domains. In ICML 2023 Workshop: Sampling and Optimization in Discrete Space,
2023.

Tsuyoshi Inouye, Kazuhiro Shinosaki, H. Sakamoto, Seigo Toi, Satoshi Ukai, Akinori Iyama, Y Katsuda,
and Makiko Hirano. Quantification of eeg irregularity by use of the entropy of the power spectrum.
Electroencephalography and Clinical Neurophysiology, 79(3):204–210, 1991. ISSN 0013-4694. doi: https:
//doi.org/10.1016/0013-4694(91)90138-T. URL https://www.sciencedirect.com/science/article/
pii/001346949190138T.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan
Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by reprogram-
ming large language models. In International Conference on Learning Representations (ICLR), 2024.

12

https://www.sciencedirect.com/science/article/pii/001346949190138T
https://www.sciencedirect.com/science/article/pii/001346949190138T

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive decision-making.
Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Yixin Liu, Avi Singh, C Daniel Freeman, John D Co-Reyes, and Peter J Liu. Improving large language
model fine-tuning for solving math problems. arXiv preprint arXiv:2310.10047, 2023.

Madani, Krause, and et al. Greene. Large language models generate functional protein sequences across
diverse families. Nature Biotechnology, 41:1099–1106, 2023. doi: 10.1038/s41587-022-01618-2.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines. In
Proceedings of the 7th Conference on Robot Learning (CoRL), 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. OpenAI website, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot numerical reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 840–854,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.findings-emnlp.59.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020.

Xingyou Song, Oscar Li, Chansoo Lee, Bangding Yang, Daiyi Peng, Sagi Perel, and Yutian Chen. Omnipred:
Language models as universal regressors. CoRR, abs/2402.14547, 2024. doi: 10.48550/ARXIV.2402.14547.
URL https://doi.org/10.48550/arXiv.2402.14547.

Michael Spivey. The continuity of mind. Oxford University Press, 2008.

Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction, volume 1. Princeton University Press,
2003.

Elias M Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces, volume 3.
Princeton University Press, 2005.

Terry Tao, Dec 2014. URL https://terrytao.wordpress.com/2014/12/09/
254a-notes-2-complex-analytic-multiplicative-number-theory/#nxx.

Robert Vacareanu, Vlad Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to numbers: Your
large language model is secretly a capable regressor when given in-context examples. In First Conference
on Language Modeling, 2024. URL https://openreview.net/forum?id=LzpaUxcNFK.

Megan Wei, Michael Freeman, Chris Donahue, and Chen Sun. Do music generation models encode music
theory? In International Society for Music Information Retrieval, 2024.

Eric W. Weisstein. Square wave. From MathWorld–A Wolfram Web Resource, 2024. URL https://
mathworld.wolfram.com/SquareWave.html. Accessed: September 16, 2024.

13

https://doi.org/10.48550/arXiv.2402.14547
https://terrytao.wordpress.com/2014/12/09/254a-notes-2-complex-analytic-multiplicative-number-theory/#nxx
https://terrytao.wordpress.com/2014/12/09/254a-notes-2-complex-analytic-multiplicative-number-theory/#nxx
https://openreview.net/forum?id=LzpaUxcNFK
https://mathworld.wolfram.com/SquareWave.html
https://mathworld.wolfram.com/SquareWave.html

Ruibin Yuan, Hanfeng Lin, Yi Wang, Zeyue Tian, Shangda Wu, Tianhao Shen, Ge Zhang, Yuhang Wu,
Cong Liu, Ziya Zhou, Ziyang Ma, Liumeng Xue, Ziyu Wang, Qin Liu, Tianyu Zheng, Yizhi Li, Yinghao
Ma, Yiming Liang, Xiaowei Chi, Ruibo Liu, Zili Wang, Pengfei Li, Jingcheng Wu, Chenghua Lin, Qifeng
Liu, Tao Jiang, Wenhao Huang, Wenhu Chen, Emmanouil Benetos, Jie Fu, Gus Xia, Roger Dannenberg,
Wei Xue, Shiyin Kang, and Yike Guo. Chatmusician: Understanding and generating music intrinsically
with llm. arXiv preprint arXiv:2307.07443, 2024.

A Proof of Fourier Head Scaling Law, Theorem 3.3

In this section we prove Theorem 3.3, the Fourier head scaling law. To do this, we must first discuss the
Nyquist-Shannon Sampling Theorem. This result states that in order to avoid distortion of a signal (such as
aliasing) the sampling rate must be at least twice the bandwidth of the signal. In the setting of the Fourier
head, our sampling rate is m/2 because we have m bins uniformly spaced in (−1, 1), and the bandwidth is
N/2 because the frequency of sin(πNx) is N/2. Thus the Nyquist Theorem requires us to have

m/2 ≥ 2 · (N/2) = N

in order for the higher order frequency content learned by our model to not be fallacious when we are learning
from only m bins. This justifies why we only theoretically study the case 1≪ N < m/2 in the scaling law.

A.1 Definitions

Consider an input x ∈ Rn to the Fourier head, and denote by fx : [−1, 1] → R the optimal conditional
distribution that we would like the Fourier head to approximate for this input. We will assume that fx is
periodic, since the Fourier head learns a 2-periodic Fourier density. We denote by fx,N the truncation of
the Fourier series of fx to its first N frequencies. Note that fx,N also integrates to 1 over [−1, 1] since its
first Fourier coefficient is the same as that of fx. Further, fx,N is non-negative on [−1, 1] since its Fourier
coefficients, being a subsequence of the coefficients of fx, are non-negative definite; a periodic function with
non-negative definite Fourier coefficients is non-negative by Herglotz’s Theorem (Brockwell & Davis, 1991,
Corollary 4.3.2). For completeness, we will recall the convolution formulas, specialized to the cases we
consider in our argument.
Definition A.1 (Discrete convolution). Let bj := −1+ 2j+1

m , 0 ≤ j < m be the center points of the m bins in
(−1, 1), and let us denote b⃗ := (b0, . . . , bm−1). Denote by Gσ(z) := e−z2/2σ2

√
2πσ

the Gaussian PDF with standard
deviation σ. Then the discrete Gaussian convolution filter of radius m− 1 is

gσ := Gσ([1−m, 2−m, 3−m, . . . , m− 1])
S(m, σ) ∈ R2m−1, (A.1)

where the normalization constant is

S(m, σ) :=
m−1∑

k=1−m

Gσ(k). (A.2)

The discrete convolution of gσ ∈ R2m−1 and fx,N (⃗b) ∈ Rm is the vector (gσ ∗ fx,N)(⃗b) ∈ Rm whose j’th
coordinate is given by

(gσ ∗ fx,N)(bj) = 1
S(m, σ)

m−1∑
k=1−m

Gσ(k) · fx,N (bj−k) . (A.3)

Definition A.2 (Continuous convolution). The continuous Gaussian convolution filter g̃σ : [− 2, 2]→ R>0
is

g̃σ(z) =
G 2σ

m
(z)

S(m, σ) = m

2S(m, σ)Gσ

(mz

2

)
. (A.4)

14

This function g̃σ(z) is a normalized truncation of a Gaussian PDF with mean 0 and standard deviation
2σ/m. The continuous convolution of g̃σ : [−2, 2] and the periodic function fx,N : [−1, 1]→ R is

g̃σ ∗ fx,N (z) :=
∫ 2

−2
g̃σ(u)fx,N (z − u) du. (A.5)

A.2 Overview of proof

In this subsection, we provide an overview of the proof of Theorem 3.3 by presenting the statements of the
lemmata that we will need, and connecting each one to the overall argument. In the next subsection, we
rigorously prove the scaling law by careful applications of these lemmata. And in the following subsection,
we will rigorously prove each of the lemmata.

This first lemma allows us to replace the discrete Gaussian convolution in the definition with a continuous
Gaussian convolution.
Lemma A.3. (Discrete convolution is close to continuous convolution) If we define the constant B1(m, σ) :=
1 + Gσ(m)

S(m,σ) , then we have that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 = ∥B1(m, σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +
√

mO(1/N2t+1). (A.6)

Furthermore, B1(m, σ) satisfies the following bound, uniformly in σ,

B1(m, σ) ≤ 1 + 1
2m− 1 . (A.7)

This next lemma, a standard result from analytic number theory allows us to upper bound the sums of the
norms of the Fourier series coefficients. This is proved in various places, see e.g. (Tao, 2014, Equation 21).
Lemma A.4 (Asymptotic expansion of Riemann zeta function). Consider the Riemann zeta function ζ(t) :=∑∞

k=1
1
kt . If t ≥ 2, then

N∑
k=1

1
kt

= ζ(t)− 1
t− 1

1
N t−1 + O(1/N t). (A.8)

This next lemma allows us to extract the main asymptotic behavior in the scaling law.
Lemma A.5. (Main term asymptotic) Denote by a0(x) the constant coefficient of fx,N . Let us suppose that
the Fourier coefficients of fx,N decay like B3(x)/kt, and define the constant

B2(σ, m, x) :=
√

a0(x)2B1(m, σ)2 + 2B1(m, σ)2B3(x)2ζ(2t). (A.9)

Then we know that

∥B1(m, σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 =
√

m

(
B2(σ, m, x)− B1(m, σ)2B3(x)2

2t− 1 · 1
N2t−1 + O(1/N2t)

)
. (A.10)

Furthermore, B2(σ, m, x) is bounded from above and below as a function of σ and m.

This final lemma allows us to relate the continuous case, where our analysis works out easier, to the discrete
case, where our smoothness metric is actually defined.
Lemma A.6. (The average value of the truncated Fourier PDF is 1/2) If N < m/2, then

m−1∑
j=0

fx,N (bj) = m

2 . (A.11)

15

A.3 Proving Theorem 3.3 using the lemmata

We now prove the theorem that provides a scaling law for the Fourier head. This result quantifies the trade-off
between modeling capacity and smoothness as the number of frequencies increases. In order to prove this, we
must assume that fx, the conditional distribution being learned by the Fourier head, is sufficiently smooth.
For example, if fx is twice continuously differentiable, then the Fourier coefficients corresponding to the k-th
frequency of fx are in O(1/k2) (Stein & Shakarchi, 2003, Ch.2, Cor. 2.4). Thus, our assumption that the
Fourier coefficients decay quadratically is reasonable, and our Fourier quadratic weight decay regularization
helps ensure that this condition is met in practice as well. In our theorem, we generalize this hypothesis to
the cases where the Fourier coefficients corresponding to the k-th frequency of fx are in O(1/kt).
Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output dimen-
sion m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn, and
denote by fx : [−1, 1] → R the optimal conditional distribution that we would like the Fourier head
to approximate for this input. Suppose that there exists some t ≥ 2 such that the Fourier coefficients
of fx decay on the order of 1/kt. Denote by fx,N the truncation of fx to its first N frequencies,
denote by b⃗ ∈ Rm the m bin centerpoints in [−1, 1], and denote by y(N) = fx,N (⃗b)/(fx,N (b0) + · · ·+
fx,N (bm−1)) ∈ Rm the discretization of fx,N into m bins. Then, there exist constants C1, C2 > 0
such that

s(y(N)) = C1 −
C2

N2t−1 + O(1/N2t). (3.3)

Proof of Claim 2 of Theorem 3.3. We can estimate that

s(y(N)) = 1∑m−1
j=0 fx,N (bj)

∞∑
σ=1

ασ∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 (Definition 3.2) (A.12)

= 1∑m−1
j=0 fx,N (bj)

∞∑
σ=1

ασ

(
∥B1(m, σ)fx,N (⃗b)− (g̃σ ∗ fx,N)(⃗b)∥2 (Lemma A.3) (A.13)

+
√

mO(1/N2t+1)
)

=
√

m∑m−1
j=0 fx,N (bj)

∞∑
σ=1

ασ

(
B2(σ, m, x)− B1(m, σ)2B3(x)2

(2t− 1)N2t−1 (Lemma A.5) (A.14)

+ O(1/N2t) + O(1/N2t+1)
)

= 2√
m
·
(

C3 −
C4

N2t−1 + O(1/N2t)
)

. (Lemmata A.5, A.6) (A.15)

In the last step we used the convergence of the respective series (which follows from boundedness of
B2(σ, m, x) and B1(m, σ) in σ) and we assigned C3 and C4 to be those sums. This completes the proof.

Proof of Claim 1 of Theorem 3.3. The proof of this claim is more straightforward. For any function f on
[−1, 1] that is at least twice continuously differentiable, we know that the Fourier series of f converges
uniformly and absolutely to f (Stein & Shakarchi, 2003, Ch. 2, Cor. 2.4). In other words, the function fN

being learnt by the Fourier head converges uniformly and absolutely to f .

A.4 Proving all of the Lemmata

In this subsection, we will restate and prove Lemmata A.3, A.5, and A.6.

16

Lemma A.3. (Discrete convolution is close to continuous convolution) If we define the constant B1(m, σ) :=
1 + Gσ(m)

S(m,σ) , then we have that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 = ∥B1(m, σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +
√

mO(1/N2t+1). (A.6)

Furthermore, B1(m, σ) satisfies the following bound, uniformly in σ,

B1(m, σ) ≤ 1 + 1
2m− 1 . (A.7)

Proof of Lemma A.3. Extending fx,N periodically to [−2, 2], we can compute that the continuous convolu-
tion g̃σ ∗ fx,N (z) is

(g̃σ ∗ fx,N)(z) =
∫ 2

−2
g̃σ(u)fx,N (z − u) du (A.16)

= m

2S(m, σ)

∫ 2

−2
Gσ

(mu

2

)
fx,N (z − u) du (A.17)

= 1
S(m, σ)

∫ m

−m

Gσ(s)fx,N

(
z − 2s

m

)
ds, (A.18)

where in the third step we applied the change of variables s = mu
2 . We claim that this is precisely a continuous

approximation of the discrete convolution in Definition 3.2. To see this, we will apply the Euler-Maclaurin
formula. This formula says that the integral in Equation A.18 is a Riemann sum over rectangles of width 1
evaluated at the right endpoints of each interval, minus an error term E(m, σ), as follows:

(g̃σ ∗ fx,N)(bj) + E(m, σ) = 1
S(m, σ)

m∑
k=1−m

Gσ(k) · fx,N

(
bj −

2k

m

)
(A.19)

= 1
S(m, σ)

m∑
k=1−m

Gσ(k) · fx,N

(
−1 + 2j + 1

m
− 2k

m

)
(A.20)

= 1
S(m, σ)

m∑
k=1−m

Gσ(k) · fx,N

(
−1 + 2(j − k) + 1

m

)
(A.21)

= 1
S(m, σ)

(
m−1∑

k=1−m

Gσ(k) · fx,N (bj−k) + Gσ(m)fx,N (bj−m)
)

(A.22)

= 1
S(m, σ) (S(m, σ) · (gσ ∗ fx,N)(bj) + Gσ(m)fx,N (bj)) (A.23)

= (gσ ∗ fx,N)(bj) + 1
S(m, σ)Gσ(m)fx,N (bj), (A.24)

where the error term is defined as

E(m, σ) := 1
S(m, σ)

∫ m

−m

d
(
Gσ(s)fx,N

(
z − 2s

m

))
ds

P1(s) ds (A.25)

+ 1
2S(m, σ) (Gσ(m)fx,N (z − 2)−Gσ(−m)fx,N (z + 2)) , (A.26)

where P1(s) := s− ⌊s⌋ − 1/2 is the periodized Bernoulli polynomial. We will now estimate this error term.
Note that since Gσ is an even function and fx,N is periodic with period 2, the difference in A.26 is 0.
Therefore, we can compute that

E(m, σ) = 1
S(m, σ)

∫ m

−m

G′
σ(s)P1(s)fx,N

(
z − 2s

m

)
ds (A.27)

− 2
mS(m, σ)

∫ m

−m

Gσ(s)P1(s)f ′
x,N

(
z − 2s

m

)
ds. (A.28)

17

Using the triangle inequality, we can bound E(m, σ) in terms of convolutions with g̃σ:

|E(m, σ)| ≤ 1
S(m, σ)

∣∣∣∣∫ m

−m

G′
σ(s)P1(s)fx,N

(
z − 2s

m

)
ds

∣∣∣∣ (A.29)

+ 1
S(m, σ)

∣∣∣∣∫ m

−m

Gσ(s)P1(s)f ′
x,N

(
z − 2s

m

)
−2
m

ds

∣∣∣∣ (A.30)

≤ 1
S(m, σ)

(
m

2σ2

∫ m

−m

Gσ(s)fx,N

(
z − 2s

m

)
ds + 1

m

∫ m

−m

Gσ(s)
∣∣∣∣f ′

x,N

(
z − 2s

m

)∣∣∣∣ ds

)
(A.31)

= m

2σ2 (g̃σ ∗ fx,N)(z) + 1
m

(g̃σ ∗
∣∣f ′

x,N

∣∣)(z), (A.32)

where in Equation A.31 we used that |P1(s)| ≤ 1/2 and that |G′
σ(s)| = |s|Gσ(s)/σ2 ≤ mGσ(s)/σ2 for

s ∈ [−m, m].

Note that since g̃σ is a truncated Gaussian on [−2, 2], it is infinitely differentiable on the open set (−2, 2),
however, it is not differentiable at the endpoints −2 and 2 when treated as a 4-periodic function. This
technical difficulty can be resolved using mollifiers: we can replace g̃σ with g̃σ ∗ φϵ, where {φϵ} is a family
of mollifiers indexed by ϵ > 0. The key properties of a mollifier are that g̃σ ∗ φϵ is infinitely differentiable
as a 4-periodic function for all ϵ > 0 and limϵ→0 g̃σ ∗ φϵ = g̃σ (Stein & Shakarchi, 2005, Ch. 3). We are
ultimately interested in only bounds on absolute values of g̃σ convolved with various functions, and since
absolute values are continuous and inequalities are preserved under taking limits, all our bounds are still
true. In particular, this shows that the k’th Fourier coefficients of g̃σ decay faster than any polynomial.
And on the other hand, by assumption we know that the Fourier coefficients of fx,N decay on the order of
1/kt; and we know that |f ′

x,N | is continuous and 2π periodic, so its Fourier coefficients converge. So by the
convolution theorem, we can deduce that the Fourier coefficients of g̃ ∗ fx,N and g̃σ ∗ |f ′

x,N | decay faster than
any polynomial. Summed over the N frequencies, this shows that |g̃σ ∗ fx,N (x)| and |g̃σ ∗

∣∣f ′
x,N

∣∣ (z)| decay
faster than any polynomial as well. Since m is fixed and σ ≥ 1, this implies that

|E(m, σ)| = O(1/N2t+1). (A.33)

Using Definition A.1 and Equation A.19, we have that

gσ ∗ fx,N (bj) = 1
S(m, σ)

m∑
k=1−m

Gσ(k) · fx,N

(
bj −

2k

m

)
− 1

S(m, σ)Gσ(m)fx,N (bj) (A.34)

= (g̃σ ∗ fx,N)(bj) + E(m, σ)− 1
S(m, σ)Gσ(m)fx,N (bj). (A.35)

If we define C1(m, σ) := Gσ(m)
S(m,σ) , then Equation A.35 combined with A.33 together imply that∣∣∣gσ ∗ fx,N (bj)− g̃σ ∗ fx,N (bj) + C1(σ, m)fx,N (bj)

∣∣∣ = O(1/N2t+1). (A.36)

Finally, we can estimate that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 = ∥fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(σ, m)fx,N (⃗b)∥2 (A.37)
+ ∥gσ ∗ fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(m, σ)fx,N (⃗b)∥ (A.38)

= ∥fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(m, σ)fx,N (⃗b)∥2 +
√

m∥O(1/N2t+1)∥2 (A.39)
= ∥(1 + C1(m, σ))fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +

√
mO(1/N2t+1). (A.40)

This completes the first part of the proof. For the second part of the proof, since S(m, σ) ≥ (2m−1)Gσ(m−1),
we can estimate that

B1(m, σ) ≤ 1 + Gσ(m)
(2m− 1)Gσ(m− 1) ≤ 1 + 1

2m− 1e−(2m−1)/2σ2
≤ 1 + 1

2m− 1 . (A.41)

This completes the proof.

18

Lemma A.5. (Main term asymptotic) Denote by a0(x) the constant coefficient of fx,N . Let us suppose that
the Fourier coefficients of fx,N decay like B3(x)/kt, and define the constant

B2(σ, m, x) :=
√

a0(x)2B1(m, σ)2 + 2B1(m, σ)2B3(x)2ζ(2t). (A.9)

Then we know that

∥B1(m, σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 =
√

m

(
B2(σ, m, x)− B1(m, σ)2B3(x)2

2t− 1 · 1
N2t−1 + O(1/N2t)

)
. (A.10)

Furthermore, B2(σ, m, x) is bounded from above and below as a function of σ and m.

Proof of Lemma A.5. We will first argue that B2(σ, m, x), as a function of σ and m, is bounded from above
and below. Indeed, from its definition, B2(σ, m, x) ≥

√
a0(x)2B1(m, σ)2 ≥ |a0(x)|. But the Fourier PDF

has integral 1 over [−1, 1], so its constant term is a0(x) = 1/2. This implies that B2(σ, m, x) ≥ 1/2. To
see B2(σ, m, x) is bounded from above, we simply recall that in Lemma A.3 we showed that |B1(m, σ)| ≤ 2,
which implies that |B2(σ, m, x)| ≤

√
4a0(x)2 + 8B3(x)2ζ(2t). This shows that B2(σ, m, x) is bounded above

and below as a function of m and σ, as claimed.

Now, let (d0(x), . . . , dm−1(x)) ∈ Rm be the discrete Fourier transform of (B1(m, σ)fx,N − g̃σ ∗fx,N)(⃗b) ∈ Rm.
For notational simplicity, we will write B1 = B1(m, σ) as long as σ is fixed. By Plancherel’s Theorem, we
have

m−1∑
j=0
|(B1fx,N − g̃σ ∗ fx,N)(bj)|2 = 1

m

m−1∑
k=0
|dk(x)|2 . (A.42)

Let hσ,j be the Fourier coefficients of g̃σ, treated as a periodic function with period 4, and defined over
[−2, 2]:

g̃σ(z) =
∞∑

j=−∞
hσ,jeπijz/2. (A.43)

Since fx,N is defined over [−1, 1] and is periodic with period 2, we can likewise treat it as a function over
[−2, 2] with period 4, in which case we can rewrite its Fourier series as

fx,N (z) =
2N∑

j=−2N

ãj(x)eπijz/2, (A.44)

where

ãj(x) =
{

aj/2(x) if j ≡ 0 (mod 2)
0 else.

(A.45)

Then, by the Convolution Theorem, we have

(B1fx,N − g̃σ ∗ fx,N)(bl) =
2N∑

j=−2N

ãj(x)(B1 − hσ,j) · eπijbl/2 (A.46)

=
N∑

k=−N

ã2k(x)(B1 − hσ,2k) · eπikbl (A.47)

=
N∑

k=−N

ak(x)(B1 − hσ,2k) · eπikbl , (A.48)

19

where in the second equality we used the fact that ãj is 0 for odd j and therefore re-indexed using k = j/2.
Thus, using the definition of DFT along with Equation A.48, we get

dk(x) =
m−1∑
l=0

(B1fx,N − g̃σ ∗ fx,N)(bl) · e−2πikl/m (A.49)

=
m−1∑
l=0

N∑
j=−N

aj(x)(B1 − hσ,2j)eπijbl · e−2πikl/m (A.50)

=
N∑

j=−N

aj(x)(B1 − hσ,2j)
m−1∑
l=0

eπij(−1+ 2l+1
m) · e−2πikl/m (A.51)

=
N∑

j=−N

aj(x)(B1 − hσ,2j) · eπij(−1+1/m)
m−1∑
l=0

e2πi(j−k)l/m. (A.52)

First, we claim that at most a single summand (in j) is represented. Towards this, we note that
m−1∑
l=0

e2πi(j−k)l/m =
{

0 j ̸≡ k (mod m)
m j ≡ k (mod m).

(A.53)

Then, we note that since 0 < N < m/2, for each 0 ≤ k < m, there is at most one j ∈ {−N,−N + 1, . . . , N},
such that j ≡ k (mod m). This shows that there is at most a single summand. We will now find the exact
formula for each summand. We consider three cases.

• Case 1: 0 ≤ k ≤ N . In this case, j = k satisfies j ≡ k (mod m), so this index gives the exponential
sum of m.

• Case 2: N < k < m − N . In this case, k is too large to be an index in the sum, so we can’t
choose j = k; the next smallest equivalent value is j = k − m, which satisfies j ≡ k (mod m).
But N −m < j < −N in this case, so k is too small to be an index in the sum; therefore, every
exponential sum is zero in this range.

• Case 3: m−N ≤ k ≤ m−1. In this case, j = k−m satisfies j ≡ k (mod m). We have −N ≤ j ≤ 1,
so this is a valid index in the sum.

This gives the following closed formula:

dk(x) =

m · ak(x)(B1 − hσ,2k)eπik(−1+1/m) 0 ≤ k ≤ N

0 N < k < m−N

m · ak−m(B1 − hσ,2(k−m))eπi(k−m)(−1+1/m) m−N ≤ k ≤ m− 1.

(A.54)

Using this closed formula in A.42, we obtain
m−1∑
j=0
|(B1fx,N − g̃σ ∗ fx,N)(bj)|2 = 1

m

N∑
k=0

∣∣∣m · ak(x)(B1 − hσ,2k)eπik(−1+1/m)
∣∣∣2 (A.55)

+ 1
m

m−1∑
k=m−N

∣∣∣m · ak−m(B1 − hσ,2(k−m))eπi(k−m)(−1+1/m)
∣∣∣2 (A.56)

= m

N∑
k=0
|ak(x)(B1 − hσ,2k)|2 + m

m−1∑
k=m−N

∣∣ak−m(B1 − hσ,2(k−m))
∣∣2 , (A.57)

where in the last step we used that
∣∣eπik(1−1/m)

∣∣ = 1 =
∣∣eπi(k−m)(1−1/m)

∣∣ since they are both complex
exponentials. Now, since g̃σ is a real and even function, we know that its Fourier coefficients hσ,k are real.

20

Further, since g̃σ is infinitely differentiable, we also know that hσ,k = O(1/kt) (in fact they decay faster than
1/kp for any p ≥ 1). Thus, using that |ak(x)| decays like B3(x)/kt, we see

|ak(x)(B1 − hσ,2k)|2 = |ak(x)|2 (B2
1 − 2hσ,2k(x) + h2

σ,2k) (A.58)

= B2
3B2

1
k2t

+ O

(
1

k2t(2k)t

)
+ O

(
1

k2t(2k)2t

)
. (A.59)

From A.59, it is clear that since we are interested in only the dominant asymptotic, we can safely ignore the
higher order terms coming from the hσ,k. As a result, we can estimate that

m−1∑
j=0
|(B1fx,N − g̃σ ∗ fx,N)(bj)|2 ≈ mB2

1a0(x)2 + m

N∑
k=1

B2
3B2

1
k2t

+ m

m−1∑
k=m−N

B2
3B2

1
(k −m)2t

(A.60)

= ma0(x)2B2
1 + m

N∑
k=1

B2
3B2

1
k2t

+ m

−1∑
k=−N

B2
3B2

1
k2t

(A.61)

= ma0(x)2B2
1 + m

N∑
k=1

B2
3B2

1
k2t

+ m

N∑
k=1

B2
3B2

1
k2t

(A.62)

= ma0(x)2B2
1 + 2m

N∑
k=1

B2
3B2

1
k2t

. (A.63)

Next, we note that our asymptotic in Lemma A.4, applied at 2t, yields

N∑
k=1

1
k2t

= ζ(2t)− 1
2t− 1

1
N2t−1 + O(1/N2t). (A.64)

Substituting this into A.63, we obtain
m−1∑
j=0
|(B1fx,N − g̃σ ∗ fx,N)(bj)|2 = ma0(x)2B2

1 + 2mB2
1B2

3

(
ζ(2t)− 1

2t− 1
1

N2t−1 + O(1/N2t)
)

(A.65)

= m

(
B2

2 −
2B2

1B2
3

2t− 1
1

N2t−1 + B2
1B2

3O(1/N2t)
)

(A.66)

= m

(
B2

2 −
2B2

1B2
3

2t− 1
1

N2t−1 + O(1/N2t)
)

, (A.67)

where we defined B2 = B2(σ, m, x) :=
√

a0(x)2B2
1 + 2B2

1B2
3ζ(2t) as in the statement of the Lemma, and in

the third line we applied Lemma A.3 to estimate that B1 ≤ 2, and we used that B3 = B3(x) only depends
on x. Then, using the Taylor expansion (1 + x)1/2 = 1 + x

2 + O(x2) about 0, we can estimate thatm−1∑
j=0
|(B1fx,N − g̃σ ∗ fx,N)(bj)|2

1/2

=
(

mB2
2 −

m2B2
1B2

3
2t− 1

1
N2t−1 + mO(1/N2t)

)1/2

(A.68)

=
√

mB2

(
1− 2B2

1B2
3

(2t− 1)B2
2

1
N2t−1 + 1

B2
2

O(1/N2t)
)1/2

(A.69)

=
√

mB2

(
1− 1

2 ·
2B2

1B2
3

(2t− 1)B2
2

1
N2t−1 + O(1/N2t)

)
(A.70)

=
√

m

(
B2 −

B2
1B2

3
2t− 1 ·

1
N2t−1 + O(1/N2t)

)
. (A.71)

To justify our application of the Taylor expansion, we note that N ≫ 1, and B2 = B2(σ, m, x) is bounded
below as a function of σ and m. This completes the proof.

21

Lemma A.6. (The average value of the truncated Fourier PDF is 1/2) If N < m/2, then

m−1∑
j=0

fx,N (bj) = m

2 . (A.11)

Proof of Lemma A.6. Denote by ak the Fourier coefficients of fx,N . We can compute that

m−1∑
j=0

fx,N (bj) =
m−1∑
j=0

N∑
k=−N

akeiπk(−1+ 2j+1
m) (A.72)

=
N∑

k=−N

ake−iπke
iπk
m

m−1∑
j=0

e
2πijk

m . (A.73)

Note that by hypothesis, N < m/2, which implies that |k| < m for every outer sum index k. We consider
two cases; if k = 0, then the innermost summand is e

2πijk
m = 1; and if k ̸= 0, then the innermost sum is a

truncated geometric series with first term 1, common ratio e
2πik

m , and m terms. In summary, the innermost
summand is

m−1∑
j=0

e
2πijk

m =
{

m k = 0
0 k ̸= 0,

(A.74)

which implies that
∑m−1

j=0 fx,N (bj) = ma0. But a0 = 1/2 because fx,N is a PDF implies it has average value
1/2 over [−1, 1]. This completes the proof.

B Smoothness Metric

We will examine how the proposed smoothness metric Equation 3.1 behaves in a toy example setting to gain
intuition for its behavior. Consider a square wave, which can be expressed as an infinite sum of odd integer
harmonics that decay in amplitude proportional to their frequency:

f(x) = 4
π

∞∑
n=1,3,5,...

1
n

sin
(nπx

L

)
. (B.1)

Here, the wavelength is 2L (Weisstein, 2024).

We construct a truncated version of the square wave with a finite and fixed number of frequencies. The
waveform will slowly approach its jagged, square shape as more sine waves are added. We frame these
increasingly jagged waves as descritized multinomial densities to simulate the output of the Fourier head.
To do this, we simply set the height to zero when the wave crest becomes negative and normalize the sum
to 1. The output of this transformation for a few representative waveforms is pictured in Figure 6.

Intuitively, the truncated square wave with a single sine wave ought to be the smoothest. Thus our metric
in this context should be smallest at that point, and increase monotonically as we add more sine waves. The
plot in 7 demonstrates that this is indeed the case.

Choice of L2 Distance over L1 Distance: The proposed smoothness metric Equation 3.1 permits a
general measure of discrepancy D, and we’ve chosen D to be L2 distance as indicated in 3.2. We empirically
observe that L2 distance better preserves monotonicity than the L1 for higher frequency content, thus
motivating this choice. With a sample rate of 2048Hz, the L1 distance exhibits some undesirable warping
when our square-wave multinomial uses over 80 sine waves (see Figure 7). A Fourier head in a practical
setting may possess several more than 80 frequencies; accordingly, we favor the L2 distance as our discrepancy
measure.

Alternative Notions of Smoothness: In validating our choice of smoothness metric, we compare it to
the spectral entropy (Inouye et al., 1991), which has a similar purpose in quantifying the “smoothness” of

22

Figure 6: Truncated square waves framed as densities and their smoothness.

Figure 7: Values of the smoothness metric 3.2 on our square-wave-like multinomials as we increase the
number of sine waves. We desire the value of this metric to be close to zero when there are few sine waves,
and be monotonically increasing with each additional wave, indicating that adding more high frequency
content results in a less smooth distribution. On the right, we can see that L1 as a discrepancy measure
leads to non-monotonicity, motivating our choice of L2 distance in measuring our results.

the frequency content of a signal. Spectral entropy is defined as the Shannon entropy of the power spectral
density of a sampled signal f , which is defined as follows:

H(f ; N) =
∑
n∈N

p(n) log2

(
1

p(n)

)
= −

∑
n∈N

Sn

Stotal
log2

(
Sn

Stotal

)
(B.2)

Here, N is the number of Fourier frequencies and S is the power of a frequency n ∈ N ; Sn is the power
spectrum of the nth frequency, and Stotal is the power of the signal using all N frequencies. For some
frequency at index n, Sn/Stotal is called its relative power and

∑
n∈N

Sn

Stotal
= 1 enables us to consider each

frequency’s power as a probability.

23

In the discrete case, the maximum entropy distribution is the uniform distribution. Thus, white noise will
have the highest spectral entropy. This has the consequence that power spectral densities have more high
frequency information will have lower entropy than that of white noise, provided that there is a relationship
between amplitude and frequency. More concretely, blue noise, which is defined by the amplitude increasing
proportionally to the frequency, will have lower spectral entropy than white noise. We sought a metric that
always quantified ‘sharper’ signals like blue noise as less smooth. In Table 4, we frame sampled noises of
different types as multinomial distributions to match our model setting by normalizing their amplitudes to
be in [0, 1] and normalizing their sum to 1. Our noise types are defined before normalization, in order of
smoothest to sharpest:

• Brown: S ∝ 1
F 2

• Pink: S ∝ 1
F

• White: S ∼ N (0, 1)

• Blue: S ∝ F

where S is the power density and F is the frequency. To obtain samples of each type, we first generate white
noise. We do this by sampling a Gaussian with mean 0 and standard deviation 1 to obtain amplitudes for t
samples. We then apply the Fourier transform, and multiply (or divide) the amplitudes of each component
by their frequency, and apply the inverse Fourier transform to recover the waveform. Finally we adjust the
range of amplitudes of the signal to be within [0, 1] and normalize the sum to 1.

Discrepancy Noise Mean ± Std. Deviation Diff Delta Desired Delta
L2 Brown 0.0003 ± 0.0001 n/a n/a n/a
L2 Pink 0.0017 ± 0.0002 0.0014 + +
L2 White 0.0034 ± 0.0003 0.0016 + +
L2 Blue 0.0038 ± 0.0003 0.0005 + +
Spectral Entropy Brown 0.4516 ± 0.0894 n/a n/a n/a
Spectral Entropy Pink 0.3878 ± 0.0603 -0.0638 - +
Spectral Entropy White 0.4266 ± 0.0614 0.0388 + +
Spectral Entropy Blue 0.4191 ± 0.0583 -0.0076 - +

Table 4: Smoothness measurements for four types of noise bootstrap aggregated over 1,000 trials. The
color red emphasizes how the value of Spectral Entropy is undesirably not monotonic increasing for what we
consider increasingly “sharp” noise types.

C Toy example details

Here we provide full details of the datasets used in our toy example of learning a known conditional distri-
bution.

Dataset: We create a synthetic dataset D = {(q(x), q(y), q(z))} ⊂ R3 as follows. Fix a probability distribu-
tion P1 = P1(x) that is parameterized by one variable and a second distribution P2 = P2(x, y) parameterized
by two variables. Fix an interval I ⊂ R. Sample x uniformly from I, sample y ∼ P1(x), and finally sample
z ∼ P2(x, y). We can repeat this sampling procedure N times to obtain a set of N triples for which we know
the conditional distribution of z given x and y. Finally, we quantize this set to a fixed number of uniformly
spaced bins in the range [−1, 1] to obtain the dataset DP1,P2 . We will denote the quantization of z by q(z).
We quantize into 50 bins and our dataset has size 5000, with a 80-20 split between the train and test set.
We describe three choices for the distributions we used to create our datasets. We fix I = [−0.8, 0.8] and
σ2 = 0.01 in all of them.

1. Gaussian dataset: P1(x) = N (x, σ2), and P2(x, y) = N (y, σ2).

24

2. GMM dataset: P1(x) = N (x, σ2), and P2(x, y) is a GMM centered at min{x, y}−0.1 and max{x, y}+
0.1 with variance σ2.

3. GMM-2 dataset: P1 = Uniform(I), and P2(x, y) is a GMM centered at x and y with variance σ2.

Additional results: In Figure 8, we present results from training over a range of frequencies, and for each
frequency we ran experiments with and without Fourier regularization. In Table 6 we present results on the
MSE metric, that show that the Fourier head outperforms the linear classification head.

Figure 8: We study how the quantity of Fourier frequencies impacts KL divergence and smoothness for the
toy example on each dataset. For both KL divergence and smoothness, lower is better. We observe that
the Fourier models with and without regularization performed similarly to each other, and outperformed
the linear baseline. We also note that the 50% error bars are larger for the linear baseline model; this
indicates that the Fourier models (both with and without regularization) are in general more stable. This
is in contrast to our large scale time series forecasting experiments, where we find that regularization helps;
this is likely because those experiments use an order of magnitude more frequencies, and their conditional
distributions are more complicated. Notice also how on each of the datasets, the smoothness degrades as
frequency increases, in a fashion that follows the asymptotic from our Theorem 3.3(2).

Linear Fourier
Gaussian 0.013 ± 0.001 0.012 ± 0.001

GMM 0.041 ± 0.005 0.037 ± 0.002
GMM-2 0.224 ± 0.004 0.211 ± 0.016

Table 5: MSE (↓)

Table 6: We compare the MSE between the linear head, and the Fourier head with 12 frequencies and no
regularization, on for every dataset in our toy example. We observe that the Fourier head outperforms the
linear head across all metrics. We aggregate metrics over 4 different seeds and report the standard deviation.

25

D Additional Chronos experiment details

See Table 7 for the datasets we used to train and evaluate Chronos. And in Figure 9 we present a learned
next-token PMF from a linear Chronos model, and a next-token PMF from a Chronos model which uses the
linear head. The Fourier head is about 4x smoother. For all models in the paper, we use the “mini” version
of the T5 model, as in (Ansari et al., 2024).

Figure 9: We present the next token value distribution for a single forecasted timestep on the Tourism
Monthly dataset. We observe that the Fourier head’s learned conditional distribution is smoother, fitting
signal more robustly, whereas the linear head overfits to the noise, and is therefore more jagged. We note
that the x-axis represents the bins in the latent space [−1, 1]; the x-axis values for the Fourier head are lower
because the linear head uses uniform binning, and the Fourier head uses mixed precision binning.

26

Table 7: All datasets that are used for our time series forecasting experiments. We built our time series
forecasting experiments on top of Chronos (Ansari et al., 2024), and this table is mostly copied from their
paper. The datasets are partitioned according to how they are used for training and evaluation of models:
pretraining-only data is only used for training; evaluation data is not used in training models, but only for
evaluation (final H observations). All of our evaluation datasets came from the zero-shot evaluation set from
Chronos.

Dataset Domain Freq. # Series Series Length Prediction
min avg max Length (H)

Pretraining
Brazilian Cities Temperature nature M 12 492 757 1320 -
Mexico City Bikes transport 1H 494 780 78313 104449 -
Solar (5 Min.) energy 5min 5166 105120 105120 105120 -
Solar (Hourly) energy 1H 5166 8760 8760 8760 -
Spanish Energy and Weather energy 1H 66 35064 35064 35064 -
Taxi (Hourly) transport 1H 2428 734 739 744 -
USHCN nature 1D 6090 5906 38653 59283 -
Weatherbench (Daily) nature 1D 225280 14609 14609 14610 -
Weatherbench (Hourly) nature 1H 225280 350633 350639 350640 -
Weatherbench (Weekly) nature 1W 225280 2087 2087 2087 -
Wiki Daily (100k) web 1D 100000 2741 2741 2741 -
Wind Farms (Daily) energy 1D 337 71 354 366 -
Wind Farms (Hourly) energy 1H 337 1715 8514 8784 -
Evaluation
Australian Electricity energy 30min 5 230736 231052 232272 48
CIF 2016 banking 1M 72 28 98 120 12
Car Parts retail 1M 2674 51 51 51 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M4 (Quarterly) various 3M 24000 24 100 874 8
M4 (Yearly) various 1Y 23000 19 37 841 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4
Traffic transport 1H 862 17544 17544 17544 24
Weather nature 1D 3010 1332 14296 65981 30

27

https://www.kaggle.com/datasets/volpatto/temperature-timeseries-for-some-brazilian-cities
https://ecobici.cdmx.gob.mx/en/open-data/
https://www.nrel.gov/grid/solar-power-data.html
https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
https://github.com/pangeo-data/WeatherBench
https://github.com/pangeo-data/WeatherBench
https://github.com/pangeo-data/WeatherBench
https://wikimedia.org/api/rest_v1/
https://zenodo.org/record/4654909
https://zenodo.org/record/4654909
https://zenodo.org/record/4659727
https://zenodo.org/records/4656042
https://zenodo.org/record/4656022
https://zenodo.org/record/4656014
https://zenodo.org/records/4656159
https://zenodo.org/records/4656154
https://zenodo.org/records/4656193
https://zenodo.org/records/4656298
https://zenodo.org/records/4656262
https://zenodo.org/records/4656222
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://github.com/Nixtla/datasetsforecast/blob/main/datasetsforecast/m5.py
http://www.neural-forecasting-competition.com/downloads/NN5/datasets/
https://zenodo.org/records/4656125
https://zenodo.org/record/4656096
https://zenodo.org/record/4656093
https://zenodo.org/record/4656103
https://zenodo.org/record/4656132
https://zenodo.org/record/4654822

	Introduction
	Fourier Head
	Fourier Head: Motivation
	Fourier Head: Definition
	Fourier Head: Motivating Example
	Fourier Head: Considerations for Using it During Training

	Theory
	``Smoothness'': A Metric for High Frequency Content
	A Scaling Law for the Fourier Head, in Frequency-aspect

	Toy Example: Learning A Continuous Conditional Distribution
	Large-Scale Study: Offline Reinforcement Learning
	Large-Scale Study: Probabilistic Time Series Forecasting
	Related Work
	Conclusion
	Proof of Fourier Head Scaling Law, Theorem 3.3
	Definitions
	Overview of proof
	Proving Theorem 3.3 using the lemmata
	Proving all of the Lemmata

	Smoothness Metric
	Toy example details
	Additional Chronos experiment details

