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Abstract

Recent advancements in video generation have enabled the
development of “world models” capable of simulating po-
tential futures for robotics and planning. However, speci-
fying precise goals for these models remains a challenge;
text instructions are often too abstract to capture physi-
cal nuances, while target images are frequently infeasi-
ble to specify for dynamic tasks. To address this, we in-
troduce Goal Force, a novel framework that allows users
to define goals via explicit force vectors and intermediate
dynamics, mirroring how humans conceptualize physical
tasks. We train a video generation model on a curated
dataset of synthetic causal primitives—such as elastic colli-
sions and falling dominos—teaching it to propagate forces
through time and space. Despite being trained on simple
physics data, our model exhibits remarkable zero-shot gen-
eralization to complex, real-world scenarios, including tool
manipulation and multi-object causal chains. Our results
suggest that by grounding video generation in fundamental
physical interactions, models can emerge as implicit neural
physics simulators, enabling precise, physics-aware plan-
ning without reliance on external engines. We release all
datasets, code, model weights, and interactive video demos
at our project page, https://goal-force.github.io/.

1. Introduction

The past two years have witnessed a paradigm shift in video
generation, evolving from coarse, rudimentary clips to near-
photorealistic sequences [1, 5, 8]. This progress has sparked
considerable interest in leveraging these models as “world
models” for robotics and planning. One of the most exciting
possibilities for using “world models” in planning involves
generating a video that transitions from a current state (an
initial frame) towards a specified goal state [19, 27]. Con-
sider a soccer player at the start of a game: the initial frame
shows the ball at midfield, and the objective is to score. Ex-
isting approaches predominantly rely on text or static im-

Figure 1. Given a force-conditioned task, goal force enables video
models to generate the antecedent action to accomplish the task.

ages to define these goals. However, for complex physical
tasks involving multi-step dynamics, these modalities often
prove insufficient. Text is frequently too abstract; a soccer
player’s intent is rarely just to “shoot at the goal,” but rather
to strike the ball with specific force and precision. Con-
versely, specifying a goal via a target image is often overly
burdensome or infeasible—potentially requiring a user to
render the exact lighting of a ball entering the net.

In contrast, humans approach tasks differently than
through abstract text or pixel-perfect images alone. We of-
ten decompose long, abstract tasks into concrete sub-goals
that, particularly in sports, possess distinct physical prop-
erties like spatial location, dynamics, and motion. When
taking a penalty kick, a soccer player does not focus merely
on the static end state of the ball in the net, nor do they sim-
ply rely on the abstract concept of scoring. Instead, they
aim to impart a specific trajectory and velocity—a “goal
force”—onto the ball. This paper proposes a method that
aligns with this intuition: defining goals through desired
forces and intermediate dynamics. By specifying these goal

1

ar
X

iv
:2

60
1.

05
84

8v
1 

 [
cs

.C
V

] 
 9

 J
an

 2
02

6

https://goal-force.github.io/
https://arxiv.org/abs/2601.05848v1


Video Generation Model Generalizes Goal Force Conditioning

Goal Force Prompting

Goal: hit this 
specific ball in this 
specific direction

Video with antecedent action (white ball strikes orange ball) 
that ensures goal force happens (orange ball forced to the left)

Generalizes to Collisions in Diverse Geometries

Probabilistic Task Completion

Generalizes to Human-Object Interaction 

Generalizes to Tool-Object Interaction

Generalizes to (non-Human)-Object Interaction 

Visual Planning with Physical Constraints

Generate video 
using Goal Force

x1 ~ p(x)

x2 ~ p(x)

Situation: 
[initial frame]

Figure 2. Goal Force: A user provides an input image and a goal force, and the model generates a video containing a force that locally
causes the goal force. Our model generalizes to diverse objects and interactions and enables visual planning, respecting the physical
properties of the objects and their environments.

forces, rather than limiting users to static endpoints or re-
quiring direct, low-level scene manipulation, we offer a
mechanism that is both precise enough for physics-based
planning and intuitive for human users.

To accomplish this, we introduce a framework that con-
ditions video generation on explicit goal force vectors. We
curate a dataset of paired videos and “goal forces,” adapting
a state-of-the-art open-source video model to accept these
forces as a control signal. Our training strategy relies on

the hypothesis that learning fundamental physical interac-
tions can bootstrap complex reasoning. We train the model
on simple, synthetic examples of causal primitives, such as
elastic collisions and falling dominos. Crucially, we find
that this grounded training enables non-trivial generaliza-
tion to highly diverse scenarios (Figure 2).

Our empirical results demonstrate that the model learns
to propagate forces through time and space, handling chains
of events where one object exerts force on another, which in
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turn influences a third. Remarkably, this capability extends
to zero-shot tool usage; for instance, the model can infer
how to use a golf club to impart the desired force onto a ball,
and to pick up a rose via its stem as opposed to its petals
(Figure 1), despite only being trained on simpler collision
data. This suggests the model is not merely memorizing
patterns but acting as an implicit neural physics simulator.

Our main contributions are as follows:

1. We propose Goal Force, a new task and model which
teaches video models to plan a causal chain of physi-
cal interactions to achieve a specified goal force. This
moves beyond prior direct-force methods and changes
how goals can be specified in world models.

2. We propose a training paradigm with a novel multi-
channel control signal (for goal forces, direct forces, and
mass) that teaches the model to act as an implicit neural
physics simulator, requiring no simulator at inference.

3. We demonstrate powerful out-of-domain generalization:
despite training only on simple synthetic data (e.g., balls,
dominos), our model leverages the base video model’s
rich prior to generate complex, physically-plausible sce-
narios involving tool use, human-object interaction, and
intricate multi-object collisions.

We release training and evaluation code, model weights,
synthetic training data, and benchmark datasets at our
project page, https://goal-force.github.io/.

2. Related Works

Video generative models: In recent years, video genera-
tion models have achieved remarkable progress in visual
fidelity and the plausible rendering of complex dynamics
[5, 7, 18, 22, 46]. The introduction of models like Sora
[8] highlighted the potential for using large-scale genera-
tive models as “world simulators” capable of rendering di-
verse physical phenomena. This progress has been mirrored
in open-source efforts [51, 60, 61], which are increasingly
approaching the quality of closed-source systems. While
these models serve as powerful video priors, they are typi-
cally conditioned on text or images and lack interfaces for
fine-grained, precise control over physical actions or inter-
actions, which is a gap our work aims to address.
Controllable video generation: To address the need for
greater control, many methods have been proposed. A sig-
nificant portion of this research focuses on controlling the
camera perspective [21, 47, 69]. Another major direction
is motion control, which uses various paradigms like drag-
based editing [57, 62], trajectory specification [12, 41, 67],
or optical flow guidance [32, 42, 45]. A limitation of many
of these techniques [62, 67] is their reliance on densely
specified, complete trajectories, which makes them unsuit-
able for predictive tasks where the full motion is unknown.
Prior work like Motion Prompting [16] allows for sparse

trajectory inputs, but this still specifies motion rather than
its underlying cause. More recently, Force Prompting [17]
introduced direct physical control by specifying a force vec-
tor. However, all these methods focus on direct, immediate
interventions. Our work, Goal Force, moves beyond this by
enabling the model to reason about and plan a causal chain
of forces: for example, hitting ball A in order to achieve a
desired goal force on ball B.
Physics simulators and hybrid approaches: There is a
long history of attempting to model physics from video.
Early work [6, 33] focused on extracting intuitive physical
properties, such as the modal bases of vibrating objects, but
these methods struggle to represent general motion. An al-
ternative research line incorporates explicit physics simula-
tion [2, 11, 24, 29, 36, 37, 52, 55, 58, 66, 70]. While physi-
cally accurate, these approaches generally require access to
3D geometry, which is often unavailable. Hybrid models
represent a compromise, as they combine physics simula-
tors for dynamics with generative models for appearance
[34, 38, 48] A key limitation is that these models are con-
strained by the capabilities of their internal simulator (e.g.,
rigid bodies only) and require it at inference time. More re-
cent works have removed this dependency on internal simu-
lators [44, 54] and can learn better representations of physi-
cal properties [25, 63], but these works focus on local phys-
ical properties rather than causal interactions. Concurrent
works have also explored using simulated data to fine-tune
models for freefall [30] or learning 3D trajectories [53]. Our
approach differs fundamentally: we do not use any physics
simulator at inference time. Instead, we train the generative
model itself to act as an approximate “neural simulator” that
can reason about and plan causal interactions to achieve a
specified goal.
Interactive world models: The concept of a “world
model” [20, 56] that can learn to simulate and interact with
an environment has gained significant traction. To date, in-
vestigations have largely concentrated on video game envi-
ronments [9, 10, 26, 50]. While some recent studies have
begun to explore real-world applications [1, 4, 19, 31, 64],
the forms of interaction are typically limited to text prompts
or camera navigation. In contrast, our work introduces a
new, physically-grounded form of interaction. By allowing
a user to specify a goal force, we push the model to reason
about physical cause-and-effect and plan the antecedent ac-
tions (like tool use or multi-object collisions) necessary to
achieve that goal, representing a step towards more capable
and physically-aware interactive world models.
Planning with videos: Video models have been applied
to solve decision-making problems in robotic applica-
tions [35, 40]. A video generative model can serve as re-
ward functions [15, 23], dynamics models [49, 59], and
pixel-based planners [3, 28, 71]. For example, UniPi [14]
and Adapt2Act [39] employ text-conditioned video gener-
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Direct Force: user specifies the action (poke block), and the block reacts directly 

Goal force: user specifies the goal (poke block), then the model 
generates an action to accomplish the goal (pendulum strikes block)

Figure 3. Force prompt and goal force prompt result in different behaviors. With a direct force applied to the red block (top), the
effect is directly materialized (i.e. the block falls over). The force in this case is encoded in the red channel of the control signal as a moving
Gaussian blob. In contrast, with a goal force applied to the red block (bottom), the model must find the antecedent motion to achieve the
goal force (i.e. the pendulum swings to knock over the block). The force in this case is encoded in the green channel of the control signal
as a moving Gaussian blob. We visualize the control signal overlaid on top of the video via alpha blending.

ative models to predict visual plans that depict future out-
comes, which are then converted into robotic actions with
inverse dynamics models. With our introduced framework,
such visual planners can take goal forces, in addition to text,
to specify the desired goals.

3. Method: Prompting with Goal Force

Our method reframes force-conditioned video generation
from specifying a direct force (e.g., [17, 38, 66]) to declar-
ing a desired goal force. Given a starting frame ϕ and a text
prompt τ , the user specifies a “goal force” on a target object
(make ball B move right). The model’s task is to generate
a video v that synthesizes a physically-plausible antecedent
causal chain (ball A striking ball B) to achieve that goal.

We achieve this by training a video generative model to
act as an implicit neural physics planner. The core of our ap-
proach is a novel training paradigm built on a multi-channel
physics control signal and a curriculum of synthetic data.

3.1. Multi-Channel Physics Control Signal
We introduce a 3-channel physics control tensor π̃ ∈
Rf×3×h×w, where f is the number of frames, h and w are
the spatial dimensions, and each of the 3 channels encodes
a specific physical property. This tensor π̃ is the spatial-
temporal encoding of the abstract user prompt.
Channel 0: Direct Force. Encodes an immediate, direct
force (the “cause”). Following [17], we represent this as a
“moving Gaussian blob” video, where the blob’s trajectory
and duration are affinely proportional to the force vector
(location, angle, and magnitude).

Channel 1: Goal Force. Encodes the desired outcome (the
“effect”) on a target object. This channel uses the same
moving Gaussian blob representation to specify the desired
force (and resulting motion) on the target object. We vi-
sualize the practical difference between a Goal force and a
Direct force in Figure 3.
Channel 2: Mass. Encodes privileged physical informa-
tion, such as relative object mass. We represent this as a
static Gaussian blob in this channel, centered on the ob-
ject, with a radius affinely proportional to its mass. The
mass signal is optional, and offers an interface for users
to provide more fine-grained, object-level physical prop-
erties, when they are available. When not provided, Goal
Force can instead resort to the physical priors encoded in
video generative models themselves, a behavior referred to
as “mass understanding” in [17].
Force and Mass Normalization. We note that force and
mass values are not calibrated to an absolute physical scale.
Instead, they follow an intuitive, relative scale normalized
within each synthetic dataset (dominos, balls, plants). Our
model learns this relative concept, as the Gaussian blob en-
coding is also defined proportionally to the value range of
a given domain. This allows the model to generalize the
idea of force (e.g., “small poke” vs. “large poke”) without
requiring a unified, absolute scale.

3.2. Goal Reaching via Implicit Planning
We train the model on a synthetic dataset of simple causal
chains (colliding balls, falling dominos) and complex dy-
namics (swaying flowers), generated using Blender and
PhysDreamer [66]. This dataset contains three scenarios:
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Prior methods are “what if” machines, 
directly accomplishing the force-conditioned 
task (arrow) without any implicit planning.

GFP: generates the cause (robot drags block) Tora: generates the effect (block slides)

GFP: generates the cause (hand lifts ornament) Force Prompting: generates the effect (ornament swings)

GFP: generates the cause (ruler pokes rose) PhysDreamer: generates the effect (rose sways)

GFP: generates the cause (domino chain) PhysGen: generates the effect (domino falls)

Goal Force is a “how-to” machine, generating 
the antecedent action in order to accomplish 

the force-conditioned task (arrow).

Figure 4. In prior methods (right), the user provides a force, and the model directly applies the force to the target object. In our method
(left), the user provides a goal force, and the model generates the causes that achieve the desired effect on the target object. The top three
methods (PhysGen [38], PhysDreamer [66], and Force Prompting [17]) all accept forces as conditioning; the fourth method, Tora [67],
accepts trajectories rather than forces, so we condition on an acceptable trajectory.

• Dominos (3k videos): Generated in Blender, these videos
show a line of dominos where a direct force on one initi-
ates a chain reaction, linking the “cause” to a “goal force”
on a downstream domino.

• Rolling Balls (6k videos): Blender scenes of multiple
balls. A direct force is applied to a “projectile” ball,
which is aimed to either collide with a “target” ball (4.5k
videos) or miss it (1.5k videos).

• PhysDreamer Carnation (3k videos): Videos of a
flower swaying after being poked, generated with Phys-
Dreamer [66], a method that integrates 3D Gaussians and
a physics simulator. This component teaches the model
complex, non-rigid dynamics from a direct force.

Full data generation details are in Appendix 7.2.

This synthetic data for the ball collisions and domino
collisions provides ground-truth pairs of (direct force, re-
sulting goal force). Our key training strategy is to ran-

domly mask the causal information. For each training
video, we provide either the direct force (in Ch 0) or the
goal force (in Ch 1), zeroing out the other. (And in scenes
without collisions, namely 1/4 of the ball scenes and all the
plant scenes, we only provide the direct force in Ch 0.) This
forces the model to learn the physical reasoning:

• Goal → Plan: Given a goal force, the model must infer
and generate the antecedent direct-force event.

• Action → Outcome: Given a direct force, the model
must simulate the resulting collision and secondary force.

The mass channel (Ch 2) is also randomly masked dur-
ing training. This teaches the model to leverage privileged
physics information when available but also to rely on its
internal, learned physics prior to estimate properties (like
mass) from appearance when it is not. The text prompt’s
role is to set the semantic context (e.g., “a pool table”) and
guide the model toward a plausible distribution of videos. It
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Benchmark Two Object Collision Multi Object Collision Human Object Interaction Tool Object Interaction
Force Real. Visual Force Real. Visual Force Real. Visual Force Real. Visual
Adh. Motion Qual. Adh. Motion Qual. Adh. Motion Qual. Adh. Motion Qual.

Text-only, zero-shot 57% 57% 49% 60% 63.3% 76.7% 77.8% 53.3% 55.6% 96.7% 56.7% 70%
Text-only, fine-tuned 66% 46% 49% 60% 86.7% 66.7% 57.8% 47.8% 45.6% 70% 46.7% 50%

Table 1. Human study comparing Goal Force method to text-only baselines. Numbers indicate the percentage of human pairwise
preferences for Goal Force Prompting over each text-only baseline on each benchmark dataset. The proposed model consistently yields
superior goal force adherence against both baselines, with minimal degradation of motion realism and visual quality.

does not, however, specify the low-level causal plan, such
as which ball should strike another. This ambiguity is in-
tentional: it forces the model to leverage its internal prior
to plan a valid antecedent action, constrained only by the
specific objective of the goal force prompt.

3.3. Architecture and Training Details
We build our model on Wan2.2 [51], a Mixture-of-Experts
diffusion model. We use a ControlNet [65] module to con-
dition on our physics signal π̃. We fine-tune this ControlNet
only for the high-noise expert, as this expert is primarily
responsible for global structure and low-frequency dynam-
ics [13], which aligns with our physics-planning task. The
ControlNet module clones the first 10 DiT layers from the
pretrained Wan2.2, fine-tuning them and feeding their out-
puts to the frozen base model via zero-convolutions. We
encode the goal force prompt π using the frozen Wan2.2
encoder and pass the result through a randomly initialized
patch embedding layer before feeding it to the ControlNet
DiT layers. We fine-tune the model for 3,000 steps with an
effective batch size of 4 (1 per device on 4 NVIDIA 80GB
A100s), which completes in under 48 hours. We use videos
of 81 frames at 16 FPS during training and inference.

4. Experimental Comparisons

4.1. Comparison to Text-Only Baselines
To evaluate Goal Force, we first compare to baselines that
use text-only conditioning. We create a new benchmark of
25 challenging scenes curated from permissively licensed
web sources {Pexels, Pixabay, Unsplash} as well as gener-
ative models {Nano-banana, GPT-Image-1}. We then con-
duct a 2AFC human study (N = 10) on Prolific, comparing
our full Goal Force model against those baselines.
Baselines. We compare against two models:
1. Text-only (Zero-shot): Wan2.2 base model, prompted

with a text suffix, e.g., “...a golf ball rolls across the
grass, colliding with another ball. The secondary object
is moved with very strong force to the left.”.

2. Text-only (Fine-tuned): Our ControlNet architecture
finetuned on our synthetic data, but with the physics con-
trol signal zeroed out, relying only on the text suffixes
provided during training.

Human Study for Generalization. Our benchmark spans
four categories of increasing generalization from our train-
ing data: (1) two-object collisions (cantaloupes, pendulum
striking object, pool ball, rubber duck toys in water, bars
of soap, soccer balls, softballs), (2) multi-object collisions
(ball colliding with domino, golf balls, tennis balls) (3)
human-object interaction (hand interacting with ornaments,
toy car; we also include in this category a dog interacting
with a ball, and a cat knocking over a chess piece), and (4)
tool-object interaction (golf club hitting golf ball, and a fork
touching a dome of jello). Participants evaluated videos
on three axes: Goal Force Adherence (Does the video ac-
complish the specified goal?), Realistic Motion, and Visual
Quality.

Table 1 compares the performance of Goal Force against
the text-only baselines. These results demonstrate that our
model outperforms both baselines on goal force adherence,
demonstrating that the text prompt is not sufficient, con-
firming that the explicit physics control signal is critical for
solving the task. The results also demonstrate that this goal
force adherence is achieved with minimal degradation of
visual quality and motion realism. Despite training only
on synthetic balls, dominos, and a single flower, our model
generalizes effectively, enabling complex, out-of-domain
interactions like tool use and human-object planning, as vi-
sualized in Figure 2.

4.2. Comparison to Prior Methods

The Goal Force prompting task is new, and prior force-
conditioned methods (e.g., PhysGen [38], PhysDreamer
[66], and Force Prompting [17]) are not designed to solve it.
These models can only simulate a direct force (the cause),
not plan the antecedent action required to achieve a goal
force (the effect). As shown qualitatively in Figure 4, when
given a goal force prompt, those prior methods misinter-
pret it as a direct, non-causal poke on the target object.
Similarly, motion-conditioned models like ToRA [68] can
follow a specified trajectory but fail to adhere to causality,
often moving the target object before an antecedent event
(like a hand) arrives. While prior methods cannot perform
Goal Force prompting, our model is still capable of per-
forming direct Force Prompting (FP). A qualitative com-
parison against these prior works is provided in Figure 4.
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Table 2. Visual planning accuracy across scenes. Our model
achieves a high success rate in selecting a physically valid force
initiator across diverse, complex scenarios.

Scene # Valid # Success % Accuracy

Dominos 1 50 50 100.00
Pool 1 22 12 54.55
Pool 2 49 48 97.96
Duckie 1 40 34 85.00
Duckie 2 37 24 64.86
Duckie 3 41 38 92.68

5. Goal Force Enables Visual Planning

We now evaluate a core claim of our work: that Goal Force
enables a form of visual planning. We test this by analyzing
three key properties of the generated plans: their physical
accuracy, their diversity, and their awareness of privileged
physics information such as mass.

5.1. Visual Plans are Accurate
We first test if the model’s visual planning adheres to phys-
ical constraints. We create a benchmark of scenes contain-
ing “natural blockers” (Figure 5), where distractor objects
are physically constrained from initiating the goal force. A
successful plan requires the model to identify and select a
valid, unconstrained object to execute the causal chain.

For each scene, we generate 50 videos. To isolate the
planning logic from the base video diffusion model’s arti-
facts, we filter out trials exhibiting stochastic visual degra-
dation (e.g., object hallucination) prior to analysis. We de-
fine accuracy as the percentage of valid trials where the
goal force is initiated by the correct, unconstrained object,
rather than by a distractor or through spontaneous, non-
causal motion.
Results. We report accuracy for each scene in Table 2. A
random baseline achieves at most 33.3% accuracy given our
distractor design. The model demonstrates strong physical
reasoning across most of the scenes. In the pool example
(Fig. 5, top), a stick blocks the orange ball. Our model cor-
rectly selects the white ball as the initiator in 98% of valid
trials. On the rubber duckie benchmark (Fig. 5, bottom),
it selects the correct initiator. We observe that most failure
cases involve the target object moving spontaneously, rather
than the model choosing an incorrect, constrained initiator.
We also observe this trend of physically grounded visual
planning generalizes to other natural scenarios, including
the ones shown in Figure 2.

5.2. Visual Plans are Diverse
Beyond accuracy, we test if our model produces a diverse
set of valid plans rather than suffering from mode collapse.

Table 3. Diversity metric (δ(p)) scores for the 5-domino task.
Higher is better (Max: 1.0). Our model (0.6577) shows significant
diversity compared to the deterministic baseline (0.3900).

Distribution (p) Score (δ(p))

Our Model (Goal Force) 0.6577

Reference: Unif{0..4} (Max diversity) 1.0000
Reference: Unif{0..3} 0.8920
Reference: Unif{0..2} 0.7635
Reference: Unif{0..1} 0.6042
Reference: Unif{0} (Deterministic) 0.3900

We design a multi-modal task: a line of six dominos where
the goal is to topple the rightmost (sixth) domino block.
This goal can be achieved by initiating a chain reaction from
any of the five preceding dominos. A deterministic model
would repeatedly target the same domino, whereas we hy-
pothesize Goal Force will sample from the full distribution
of valid plans.

A non-diverse or deterministic model would exhibit
mode collapse, targeting the same domino repeatedly. We
hypothesize that our Goal Force model will instead sam-
ple from a diverse distribution of valid initial actions. To
quantify this, we propose a diversity metric δ(p) based on
the Jensen-Shannon Divergence (JSD). Let p̂(x) be the em-
pirical probability mass function (PMF) over the set of the
N = 5 targetable dominos, S = {0, 1, 2, 3, 4}. We define
our diversity metric as:

δ(p) = 1− JSD(p̂ ∥ Unif(S)). (1)

This metric is normalized to provide an interpretable score.
A perfectly diverse model sampling uniformly from all 5
dominos (p̂ = Unif(S)) achieves the maximum score of
δ(p) = 1.0. Conversely, a fully deterministic model ex-
hibiting complete mode collapse (i.e., p̂ is a Dirac delta
function on a single domino) yields the baseline score of
δ(p) ≈ 0.39.
Results. We present our findings in Table 3. Across 26 ran-
dom seeds, our model achieves a diversity score of 0.6577,
significantly higher than the deterministic baseline (0.3900)
and distinct from distributions with collapsed support (e.g.,
Unif{0, 1}). This demonstrates that our model successfully
explores a multi-modal distribution of valid plans rather
than collapsing to a single solution.

5.3. Visual Plans Leverage Privileged Physics
Next, we test if the model’s visual plans can use privi-
leged mass information provided in the control signal to
help guide their plans. Our experiments focus on ball col-
lision. In this setting, a physically-grounded plan must ac-
count for mass; for example, achieving a specific goal force
on a heavier target requires a stronger impact.
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Goal Forces Enable Visual Planning With Respect To Physical Constraints

In order to move the red ball in the direction of the goal force prompt, it must be hit with the white 
ball rather than the orange ball, because the path from the orange ball is blocked by the pool stick.

In order to move the rubber duck in the direction of the goal force prompt, it must be hit 
by the center duck, because the path from the other duck is blocked by a concrete barrier.

Figure 5. Given a goal force prompt, the model chooses the physically correct way to execute it. Top: even though there exist multiple
plausible initiators, the model correctly selects the white ball as the initiator to achieve the desired force on the target. Bottom: With
multiple plausible rubber ducks that could initiate the force, the model selects the initiator that is not blocked by a physical barrier.

In-distribution Scenario

Speed

(pixels / s)
1.1 3.9
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3.9 286 302

Frame 22Frame 0 Frame 34Frame 0

<

The projectile hits light target slower.

The projectile hits heavy target faster.

Light projectile hits the target faster.  

Heavy projectile hits the target slower.  

Target mass

Projectile

mass
<
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Speed
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1.1 297 275

3.9 201 272
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Target mass

<
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Projectile

mass

b) Out-of-distribution Average Speeda) In-distribution Average Speed

Out-of-distribution Scenario

With fixed goal force and projectile mass With fixed goal force and target mass

Figure 6. Visual plans take advantage of mass information.
We test goal force prompting on in-distribution (left) and out-of-
distribution (right) scenarios. In both scenarios, our model can
adjust the moving speed of the projectile accordingly when the
object masses are changed to cause the desired force magnitude.
The direction of the “<” sign indicates the desired numerical rela-
tionship; green indicates satisfaction, red indicates violation.

We design a ball collision task with a fixed goal force
magnitude, varying the projectile and target masses. In Fig-
ure 6, we test our model on two such scenarios. One is in-
distribution with a scene and viewpoint similar to our train-
ing data. The other features an out-of-distribution back-
ground, viewpoint, lighting, and ball size. We expect the
model to learn two principles: (1) if projectile mass is con-
stant, a heavier target requires a faster projectile; (2) if target

mass is constant, a heavier projectile can move slower.
To quantitatively measure the ball collision, we use

Faster R-CNN [43] to detect the positions of the two balls.
Then we determine the collision time and compute the pro-
jectile’s moving speed accordingly. We generate 15 videos
for each combination of masses and average the speed over
the samples. We observe that in the in-distribution scenario,
the projectile’s speeds satisfy all four desired speed magni-
tude relationships. In the out-of-distribution scenario, our
results satisfy three of them, while the fourth is very close.
This demonstrates the model’s capability in leveraging priv-
ileged physics information for visual planning.

6. Conclusion
We introduce Goal Force, a paradigm that shifts genera-
tive video control from specifying a direct force (the cause)
to declaring a desired goal force (the effect). We demon-
strate that by training on simple, synthetic causal primitives,
a video model can learn to function as an implicit neural
physics planner. This enables the model to reason backward
from a user-defined goal and generate a physically plausi-
ble, antecedent causal chain to achieve it. Our key finding
is that this planning capability generalizes to complex, out-
of-domain scenarios involving tool use and human-object
interactions. This work represents a step toward interactive
world models that can not only simulate a physical reac-
tion but also reason about and plan the actions required to
achieve a desired physical outcome.
Acknowledgements: We would like to thank Bill Free-
man, Calvin Luo, David Fleet, and Miki Rubinstein for use-
ful discussions. This material is based upon work partially
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Goal Force: Teaching Video Models To Accomplish Physics-Conditioned Goals

Supplementary Material

7. Additional Experiment Details
7.1. Comparison to Prior Works: Direct Force

Prompting Quantitative Comparison
We encode the the goal force prompt in the second chan-
nel of the control signal, and we encode the direct force
prompt (which is a similar task to PhysDreamer [66], Force
Prompting [17], and PhysGen [38]) in the first channel of
the control signal. In Table 4 we compare the “Direct Force
Prompting” capability of our model to those three models
via a 2AFC human study (N = 10) conducted on Pro-
lific. We gathered two benchmarks: a PhysGen benchmark,
consisting of four scenes highlighted on that work’s project
page; as well as a PhysDreamer benchmark, consisting of
three scenes highlighted on that work’s project page. We
compare our model to PhysGen and Force Prompting on the
PhysGen benchmark, and we compare our model to Phys-
Dreamer and Force Prompting on the PhysDreamer bench-
mark. Note that PhysGen models rigid body mechanics,
whereas PhysDreamer models oscillations.

7.2. Synthetic Data Generation
In this section, we provide an in-depth discussion of the
methods and specific parameters utilized for generating our
synthetic training data. This data is used to train the Goal
Force model to act as an implicit neural physics planner.

For all synthetic datasets, a key step in creating the multi-
channel control signal π̃ is the projection of 3D forces and
object properties onto the 2D image plane. We use the cam-
era’s parameters to map 3D force vectors and object world
coordinates into 2D pixel coordinates, enabling us to accu-
rately model physical interactions within the video frames.

7.2.1. Dominos Dataset
We generated 3k videos of domino chain reactions using
Blender. The setup models a causal chain where an ini-
tial direct force on one domino results in a predictable goal
force on a downstream target domino.

To ensure diversity and robustness, we randomized the
following parameters per video:
• Domino Count: Uniformly sampled from
Unif{3, . . . , 10}.

• Scene Geometry: Randomized placement and orienta-
tion of the domino line.

• Causality: Choice of the initial target domino and the
direction of the chain reaction (i.e., hitting the domino in
front or behind).

• Visuals: Randomized camera position, ground textures
(from 42 Polyhaven options), and High Dynamic Range

Images (HDRIs) for lighting and background (from 50
Polyhaven options).

• Force Magnitude: Continuous values from [0, 1], where
0 represents the minimum force required for the domino
to topple and 1 represents a maximal, strong impulse.

Each video is accompanied by a JSON file that records the
names of the initial and adjacent contact dominos, along
with the complete 2D pixel coordinates for all dominos
across every frame.

7.2.2. Rolling Balls Dataset
This dataset comprises 6k videos generated in Blender, split
into two primary categories to capture both collision and
non-collision causal interactions:
1. Collision Set (4.5k videos): A “projectile” ball, acted

upon by an unseen point force, is aimed to collide with
one specific “target” ball within a group of initially sta-
tionary “distractor” balls.

2. Non-Collision Set (1.5k videos): The projectile ball is
aimed such that it misses the target ball.
For the Collision Set, we ensured a diverse range of

physical scenarios by randomizing:
• Ball Count: Unif{3, . . . , 9}.
• Physical Properties: Ball colors, ball masses
Unif(1.0, 4.0) kg, and all ball positions.

• Visuals: Randomized camera position and ground tex-
tures.

• Force Calculation: To guarantee collision, a minimum
required force is calculated based on the projectile mass,
distance to the target, and a randomized collision time
(Unif(2.5, 4.5) seconds). This minimum force is scaled
by Unif(1.2, 1.6) to introduce physical variation.
The collision videos are evenly split between straight-on

and indirect collisions. For both types, the script first calcu-
lates the precise angular window necessary for the projectile
to hit the target.
• For straight-on collisions, the force is aimed directly at

the center of this calculated angular window.
• For indirect collisions, the force angle is randomly sam-

pled within this window, resulting in an off-center strike.
This mixed-collision approach helps the model learn di-
verse post-collision behaviors.

For the Non-Collision Set, we randomized: ball quan-
tity (Unif{3, . . . , 5}), ball textures, positions, camera an-
gle, ground textures, target ball selection, force angle
([0, 360◦)), and force magnitude ([0, 1]).

For all ball videos, a JSON file records initial 2D/3D co-
ordinates and physics parameters. For the videos featuring
indirect collisions, we also save the complete 2D pixel tra-
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Visual Quality Dominos Pool balls Stone tower Wall toy Orange Rose White Rose Tulip
Force Prompting 90.0% 80.0% 60.0% 50.0% 100.0% 80.0% 60.0%
PhysGen 60.0% 100.0% 100.0% 80.0% – – –
PhysDreamer – – – – 50.0% 50.0% 50.0%

Force Adherence Dominos Pool balls Stone tower Wall toy Orange Rose White Rose Tulip
Force Prompting 90.0% 90.0% 80.0% 90.0% 50.0% 60.0% 50.0%
PhysGen 90.0% 80.0% 80.0% 40.0% – – –
PhysDreamer – – – – 40.0% 30.0% 60.0%

Table 4. Human study comparing the Direct Force capability of the Goal Force method to prior works. Numbers indicate the
percentage of human pairwise preferences for Goal Force Prompting’s direct force capability (i.e. encoding the force in the first channel)
over each baseline on each benchmark dataset. The results demonstrate that Goal Force achieves consistently higher visual quality, as
well as superior force adherence against the majority of baselines. Notably, our method achieves these results without relying on physics
simulators or 3D assets at inference, unlike PhysDreamer and PhysGen. We note that PhysGen models rigid body mechanics, whereas
PhysDreamer models oscillations, so they can’t be directly compared to one another.

jectory of the target ball. For the non-collision videos, we
save the final 2D trajectory angle of the projectile ball.

7.2.3. Plants Dataset
This dataset, generated using PhysDreamer [66] (which in-
tegrates 3D Gaussians and a physics simulator), focuses on
non-rigid body dynamics. The videos show a plant (carna-
tion) swaying after being subjected to a direct force. We
randomized the following parameters:
• Initial Conditions: Camera position and initial object

configuration.
• Force Application: Contact points, force angles, and

force magnitudes in [0, 1], where 0 is a gentle poke and
1 is a strong impulse.
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